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Abstract

Non-Parametric Identification and Estimation of Demand

and Preferences using Scanner Data

Christopher R. Dobronyi

Doctor of Philosophy

Department of Economics

University of Toronto

2021

This thesis presents three essays on the partial non-parametric identification and estimation of demand

and preferences using scanner data. In the first essay, I consider a critical real-world problem: the formal

identification and estimation of food stamp fraud in the United States. It is shown that consumption

choices can be used to bound fraud. The estimation procedure in this essay uses a standard assumption.

In particular, it assumes that there exists a conditional quantile of consumption that coincides with

an individual demand function. This assumption is strong, but useful for the structural estimation

problem at hand. In the second and third essays, I propose flexible methods for estimating demand

and preferences using scanner data that do not require this strong assumption. In the first proposed

method, heterogeneity across consumers is introduced by assuming that the marginal rate of substitution

is a random field. In such an environment, the theory of generalized functions can be used to test

the integrability of expected demand at a parametric rate. If variation in preferences is small, then

preferences can be recovered by approximating the relationship between preferences and demand with

a first-order expansion and applying an analogue of the delta-method. In the second proposed method,

individual-level heterogeneity is characterized by a distribution π ∈ Π, and the heterogeneity across

consumers is characterized by a Dirichlet process F over the distributions in Π. Two frameworks for

estimation are considered: a Bayesian framework in which F is known, and a hyperparametric (or

empirical Bayesian) framework in which F is a member of a parametric family. Both methods are

illustrated by applications to alcohol consumption.
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Chapter 1

Food Stamp Fraud

In the United States, poor households are given food stamps. Food stamps can only be used to buy food.

Some households illegally exchange food stamps for cash. This type of exchange is called food stamp

fraud (or food stamp trafficking). The Food and Nutrition Service (FNS) is responsible for detecting and

analyzing food stamp fraud, but their methodology is limited, unable to detect certain types of fraud,

and unable to assess the effect of a change in policy on welfare or fraud. In this chapter, I use scanner

data to identify and non-parametrically estimate a model of food stamp fraud. This chapter is the first

analysis in economics that attempts to solve this critical real-world problem.

The estimation procedure in this chapter is simple and standard. It assumes that there is a one-to-one

relationship between demand (in the absence of food stamps) and preferences, and that the conditional

quantiles of consumption coincide with individual demand functions. This assumption drastically reduces

the complexity of the estimation problem. I use the analysis in this chapter to motivate the more flexible

methods described in the following chapters.

1.1 Introduction

The Supplemental Nutrition Assistance Program (SNAP) is a federal aid program in the United States

that provides low-income households with benefits that can be used to buy food. Roughly 1.5% of food

stamps—equivalently, $1.1 billion in food stamps—are thought to be illegally exchanged with retailers

for cash each year (Willey et al., 2017). This type of illegal exchange is called food stamp fraud or food

stamp trafficking. It is thought to have increased by nearly 500% since 2002 (Willey et al., 2017).

Food stamp fraud is a concern because it redirects aid from low-income households to retailers. It is

also a signal of inefficiency, motivating other forms of aid: If food stamp fraud exists, we can use in-cash

transfers to increase welfare and food expenditure,1 and decrease the cost of SNAP, without changing

1The objective of SNAP is to ensure that households are protected from malnutrition as a result of insufficient income,
as described in the Food and Nutrition Act of 2008. Benefits are used, instead of, for instance, in-cash transfers, to ensure

1
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incentives or increasing fraud.

The Food and Nutrition Service (FNS) is responsible for detecting and analyzing food stamp fraud.

Fraud is detected using undercover investigations, social media, tips and referrals, and transaction data

(Aussenberg, 2018), then analyzed using the data from these sources (Willey et al., 2017). This analysis

is expensive. It also has limitations because it uses data associated with suspicious behaviour (see Section

2.2 in Willey et al., 2017), and it is unable to assess the effect of a change in policy on welfare or fraud.

In this chapter, I non-parametrically identify and estimate a model of food stamp fraud. My method-

ology is intended to replace, or serve as a complement to, the existing methodology used by the FNS.

The analysis in this chapter uses economic theory to discern the necessary implications of fraud on con-

sumption, then looks for these implications in the Panel Survey of Income Dynamics (PSID), and the

Nielsen Homescan Consumer Panel (NHCP).

In the PSID, approximately 2 percent of households with benefits report being disqualified for break-

ing the rules, approximately 2 to 10 percent of households with benefits report expenditures that are

consistent with fraud, and the average amount of benefits exchanged ranges from approximately $325 to

$1,800, depending on the year. I estimate just over $1 billion dollars of food stamp fraud in 2017, which

is consistent with Willey et al. (2017). I find that expenditures that are consistent with fraud are more

likely to be reported by poorer households in the South with more members and younger female heads.

I show that there is evidence of fraud in the NHCP for households with the above characteristics. I

use this data to non-parametrically estimate the structural objects of interest in the model of food stamp

fraud, including (i) demand for goods (in the presence of fraud), (ii) bounds on food stamp amounts

(which are unobserved in the NHCP), (iii) the expected cost of an illegal exhange to the household, and

(iv) bounds on demand for fraud. These objects can be used to rule out fraud for certain households or

bound the effect of a change in policy on fraud.

The remainder of this chapter is organized as follows. In the next section, I introduce the model of

fraud. Sections 1.3 and 1.4 discuss non-parametric identification and estimation, respectively. In Section

1.5, I provide the applications to the PSID and NHCP. Section 1.6 concludes.

1.2 A Model of Benefit Fraud

In this section, I describe a simple model of benefit fraud. In this model, households2 get benefits if they

are eligible, and commit fraud if they have an incentive to do so. In practice, some eligible households

might not get benefits (maybe because they never apply for benefits), and some households might not

commit fraud even if they have an incentive to do so—the model in this section is intended to serve as

a benchmark.

that aid is spent on food. If households exhaust their budgets and treat benefits like cash, then, in the absence of benefit
fraud, benefits have the ability to increase food expenditure by more than in-cash transfers, which can be desirable for
paternalistic reasons, its effect on health, its effect on healthcare costs, or its effect on the welfare of dependents.

2Agents make up a household if they live together and prepare food together (see Appendix 1.A.1).
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1.2.1 Benefits

The objective of the FNS is to ensure that households are protected from malnutrition due to insufficient

income, as described in the Food and Nutrition Act of 2008. Eligible households are given Electronic

Benefit Transfer (EBT) cards. EBT cards are loaded with benefits each month, and can be used like

debit cards to buy pre-approved goods.

Assumption 1.1.

(i) There are two aggregate goods: food and non-food.3

(ii) Income can be used to buy food and non-food.

(iii) Benefits can only be used to buy food.

Let z ∈ R2
++ denote a pair (y, p), where y denotes household income, and p denotes the price of food,

both normalized by the price of non-food. The household gets a non-negative allotment of benefits. The

amount that it gets depends on z. Let b(z) denote this amount, also normalized by the price of non-food.

Assumption 1.2. The household receives a non-negative allotment of benefits b(z).

Benefits b(z) only depend on normalized income and prices. This restriction holds if, before any

normalizations, the policy b(·) is invariant to homothetic changes in income and prices—in other words,

if, before any normalizations, scaling income and prices by a common factor yields a proportional change

in benefits. This restriction is natural for a policy intended to protect households from insufficient income:

Without such a restriction, a change in the unit of money would lead to a change in purchasing power.

Assumption 1.3.

(i) The policy b(·) is non-increasing in y, given p, on R++.

(ii) Rich households do not receive benefits.

All else equal, poorer households need more aid. Assumption 1.3 says that richer households get

fewer benefits than poorer households when faced with identical prices, and that rich households are not

allocated any benefits. Assumption 1.3 implies that the policy b(·) has the form:

b(z) =

a(z), if y ≤ c(p),

0, otherwise,

(1.2.1)

for real-valued functions, a(·) and c(·), where a(·) is non-increasing in income y, given p. The form of

the policy b(·) in (1.2.1) is consistent with the Food and Nutrition Act of 2008. In practice, a household

3The names of these aggregate goods are for exposition—the results in this paper can be applied to any in-kind program.
See Appendix 1.A.8 for a comprehensive description of goods classified as food.
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is eligible to receive benefits if its income y is below a threshold c(p) that is proportional to the poverty

line, adjusted for inflation, and, if it satisfies this criterion, the amount a(z) that it gets is calculated

by subtracting 70 percent of its income from a maximum amount, adjusted for inflation, encompassing

the cost of a “thrifty” food plan for a household of its size (see Appendix 1.A for a detailed description

including maximum amounts). Likely, only 70 percent of its income is subtracted to, in part, ensure

that the policy b(·) does not distort the ranking of eligible households of the same size with respect to

purchasing power in the population (so that a decrease in income will never make an eligible household

better off). This type of restriction is often introduced to ensure that a policy is fair, and can be found

in, for instance, tax and employment insurance policies. In the current setting, this type of restriction

has an important implication: If the policy b(·) does not distort the ranking of any two households of

the same size, then “total income”—in particular, ψ(z) = y + b(z)—is strictly increasing in income y,

given p. To be clear, the amount a(·) and threshold c(·) implicitly depend on household size, which is

omitted for exposition.

Assumption 1.4.

(i) The amount a(·) is continuously-differentiable on R2
++.

(ii) The threshold c(·) is continuous on R++.

(iii) Total income ψ(z) = y + b(z) is strictly increasing in y, given p, on R++.

Assumption 1.4(i) implies that the policy b(·) is smooth wherever it is positive, ruling out, for instance,

piecewise-linear policies with two or more discontinuities. Assumption 1.4(ii) rules out pathological cases

with thresholds c(·) that “jump.” Assumption 1.4(iii) impedes the policy b(·) from decreasing in income

y too quickly. Under Assumption 1.4(i), Assumption 1.4(iii) holds if, and only if:

− 1 <
∂b(z)

∂y
, (1.2.2)

at every z ∈ R2
++ such that y 6= c(p). While Assumption 1.4 is both fair and natural for any benefit

policy, only a few of the results that follow need this assumption. It will be made clear when we need it.

Example 1.1. To illustrate Assumptions 1.3 and 1.4, let us consider a parametric piecewise-linear policy

b(·). Formally, let us consider the policy b(·) defined by:

b(z) =

γ1 − γ2y + γ3p, if y ≤ γ1+γ3p
γ2

,

0, otherwise,

(1.2.3)

for every z ∈ R2
++, in which γ ∈ R3

+ denotes a vector of non-negative numbers with γ2 > 0. Under this

specification, the household gets benefits if, and only if, it cannot afford the pair consisting of γ3 units
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of food and γ1 units of non-food, after scaling income by γ2. If it satisfies this criterion, it gets the exact

amount of benefits needed to make the bundle (γ3, γ1) affordable, after scaling income by γ2.

Now, notice, we can also write:

b(z) =

[
γ3p− γ2

(
y − γ1

γ2

)]+

, (1.2.4)

for every z ∈ R2
++. This reformulation yields an alternative interpretation. In particular, it is equivalent

to say that, under this specification, the household gets benefits if, and only if, it cannot afford γ3 units

of food, after drifting income by γ1/γ2, and scaling income by γ2. In both interpretations, we are scaling

and/or drifting income, as done in practice. This parametric policy satisfies Assumption 1.3. It also

satisfies Assumption 1.4 if, and only if, γ2 < 1, since, for every z ∈ R2
++ such that y < γ1+γ3p

γ2
, we have:

∂b(z)

∂y
=

∂

∂y

[
γ1 − γ2y + γ3p

]
= −γ2. (1.2.5)

While theoretical, this parametric policy is a real option for protecting the household from malnutrition

due to insufficient income—it is, in fact, similar to the description of the policy in the Food and Nutrition

Act of 2008 when γ1 = 0 and γ2 = 0.7. While restrictive, parametric forms can be used to find an

optimal policy (within a family), or examine the effect of a change in the policy by means of a shock on

the parameters. For simplicity, in subsequent examples, I will make use of the following “special case”:

b(z) =

γ1 − γ2y, if y ≤ γ1
γ2
,

0, otherwise,

(1.2.6)

for every z ∈ R2
++, where γ2 > 0. Under this specification, the household gets benefits if, and only if,

its income y is smaller than γ1/γ2. If it satisfies this criterion, it gets the maximum amount γ1 that a

household can receive—the amount associated with an income y of zero—less income y scaled by γ2.

Intuitively, in this special case, the prices used in the calculation of the household’s allocation have been

“fixed” by the FNS. In practice, the household must immediately report all changes in income y, so that

its allotment can be adjusted, but maximum amounts are only updated once a year. This policy often

assigns more or less benefits than necessary. 4

Assumption 1.4 has an implication that is worth discussing here:

Proposition 1.1. Under Assumptions 1.1 to 1.4, the policy b(·) is continuous in y on R2
++.

Proof. See Appendix 1.B.1.

Proposition 1.1 says that the policy b(·) will not jump from a change in income y. While, in practice,

jumps may exist, they should be avoided since they are unfair (as they distort the ranking of households

with respect to purchasing power) and can create undesirable incentives for both workers and employers.
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Example 1.2. To illustrate these undesirable incentives, let us consider yet another parametric piecewise-

linear policy b(·). Specifically, let us consider the policy b(·) defined by:

b(z) =

γ1 − γ2y, if y ≤ γ3,

0, otherwise,

(1.2.7)

for every z ∈ R2
++, in which γ ∈ R3

+ denotes a vector of non-negative numbers with γ2 > 0. This policy

generalizes the policy with fixed prices in (1.2.6). It is more general because the threshold c(p) = γ3

is independent of the amount a(z) = γ1 − γ2y. This policy satisfies Assumption 1.3, but it violates

Assumption 1.4 unless γ2 < 1 and γ3 = γ1/γ2, as in (1.2.6). It should also be clear that the policy b is

continuous if these restrictions hold. To understand the claim about incentives, suppose γ = (50, 0, 100)′.

This choice of the parameter γ implies that the household gets $50 in benefits if, and only if, its income

y is smaller than $100. If the household makes $20 per hour, then it will get $50 in benefits if, and only

if, it works 25 hours or less. If it works 24 hours, its total income ψ will be 24× $20 + $100 = $580; if it

works 25 hours, its total income ψ will be 25× $20 = $500. This discrepancy could lead to fewer hours

worked. It could also lead to the employer decreasing its wage to get the household to work more for

less. These incentives follow from a distortion in the ranking of total income. 4

Example 1.3. The parametric policies in Examples 1.1 and 1.2 are very restrictive because they assume

that the amount a(·) is linear in z. There is, however, no reason for us to impose linearity. Let us consider

one last parametric policy b(·) defined by:

b(z) =

γ1 − γ2y
2, if y ≤ γ3,

0, otherwise,

(1.2.8)

for every z ∈ R3
++, in which γ ∈ R2

+ denotes a vector of non-negative numbers. This policy is similar

to the policy in Example 1.2, but the amount a(·) is non-linear in income y. This policy satisfies both

Assumptions 1.3 and 1.4 if, and only if, γ3 =
√
γ1/γ2 and 0 < γ2 <

√
γ2/4γ1. To obtain this conclusion,

notice that, this policy is continuous if, and only if, γ3 =
√
γ1/γ2. Moreover, for every z ∈ R2

++ such

that y < γ3, the derivative of the policy b(·) equals:

∂b(z)

∂y
=

∂

∂y

[
γ1 − γ2y

2
]

= −2γ2y. (1.2.9)

This derivative is strictly larger than −1 at z if, and only if, γ2 < 1/2y. Because this derivative is strictly

decreasing in income y, the restriction in (1.2.2) holds if, and only if, γ2 <
√
γ2/4γ1. The non-linearity

of a(·) can be used to redistribute total income ψ(·) in the population. 4

Remark 1.1. In practice, there are actually two types of thresholds that determine whether a household
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y√
γ1
γ2

γ3

γ1

γ1
γ2

b

Figure 1.1. Examples of Benefit Policies. The blue line illustrates the policy with fixed prices in
(1.2.6) from Example 1.1; the red line illustrates the policy in Example 1.2; the green line illustrates the
policy in Example 1.3. In this figure, I have used: γ1 > γ2.

is eligible: the first type concerns the household’s income, as described above; the second type concerns

the household’s “resources” (e.g., cash, savings, and personal vehicles). I neglect the second type for

simplicity. See Appendix 1.A.2 for details.

1.2.2 Benefit Fraud

Let R̄ = R2
+ denote the consumption set—that is, the set of all possible “bundles.” In the absence of

benefit fraud, the household can afford a bundle x ∈ R̄ if, and only if:

px1 + x2 ≤ y + b(z) and x2 ≤ y, (1.2.10)

where x1 is a quantity of food, and x2 is a quantity of non-food. The first inequality says that it can

afford x only if the entire bundle x costs less than total income ψ(z); the second inequality says that it

can afford x only if the quantity x2 costs less than income y. The quantity x2 is constrained by income

y because benefits cannot be used to buy non-food. The price of non-food in (1.2.10) is 1 since the price

of food p, income y, and benefits b(z) are relative to the price of non-food, as described in Section 1.2.1.

The household is not required to spend all of its income y or benefits b(z). Formally, nothing is

impeding the household from choosing a bundle x at which both of the inequalities in (1.2.10) are strict.

That being said, under some weak conditions, the household will be constrained by at least one of these

inequalities. If the household is constrained by the second inequality, it might have an incentive to use

benefit fraud to afford a larger quantity of non-food.

Assumption 1.5.

(i) The household can exchange its benefits (or a portion of its benefits) for cash.

(ii) If the household exchanges f units of benefits, it gets πf in cash, for π ∈ (0, 1).
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Assumption 1.5(i) says that the household can exchange its benefits for cash. This type of exchange

is a form of benefit fraud. This type of fraud often requires collusion—specifically, the household often

requires an agent that is willing to provide cash in exchange for its benefits. This agent can be a second

household (known in real life or met online using social media), but it is often a retailer. Assumption

1.5(ii) implies that, if the household exchanges f ∈ [0, b(z)] units of benefits with a retailer, then it gets

πf in (normalized) cash, and the retailer gets (1−π)f in (normalized) profits. The discount factor π will

be assumed to be exogenous to the household (see Assumption 1.7(i) in Section 1.2.5), determined by

either the other agent or, quite possibly, an underlying market.

In practice, there are many ways for the household to commit benefit fraud: The household can (i)

exchange benefits for cash, (ii) exchange benefits for ineligible goods, (iii) use benefits to buy food in a

container with a return deposit with the intention of discarding its contents only to obtain the deposit

(known as “water dumping” when the product is packaged water), (iv) sell its EBT card to a second

agent, (v) purchase and then resell food, or (vi) lend a retailer its EBT card, so she can use it to buy

food for her store (known as “indirect benefit fraud”). In recent years, the FNS has made the fourth

way relatively infeasible by limiting the number of times that a household can replace its EBT card.

Furthermore, the fifth way does not require any collusion. While Assumption 1.5(i) only describes the

first way, each way has the same effect on the household’s ability to buy goods. I focus on the first way

only for exposition. All of these forms of fraud are illegal (see Appendix 1.A.10 for a formal definition).

Example 1.4. Suppose that the household gives a retailer $100 in benefits, and, in return, the retailer

gives the household $50 in cash. This exchange can be completed by making a “fake” sale—for example,

by charging the household for $100 worth of food, and providing them with $50 in cash, instead of food.

In this example, we obtain:

f = 100 and π =
50

100
= 0.5. (1.2.11)

4

Example 1.5. Suppose that the household uses $10 in benefits to buy 24 water bottles and, then,

dumps and returns each bottle for 10 cents. This example yields:

f = 10 and π =
24× 0.10

10
= 0.24. (1.2.12)

In general, water dumping yields a small discount factor, making it a more extreme form of benefit fraud,

only performed by desperate households. 4

Example 1.6. Suppose that the household uses $50 in benefits to buy 10 bags of roasted almonds and

resells these bags for $4 each over eBay. This example produces the following values:

f = 50 and π =
10× 4

50
= 0.8. (1.2.13)
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As previously mentioned, this way to commit benefit fraud does not require collusion since the second

agent does not know that the almonds were bought with benefits. 4

1.2.3 Budget Constraints

Under Assumption 1.5, if the household exchanges f ∈ [0, b(z)] units of benefits, its income will increase

to y + πf , and its benefits will decrease to b(z) − f . Hence, under the option of benefit fraud, it can

afford x ∈ R̄ if there exists f ∈ [0, b(z)] such that:

px1 + x2 ≤
[
y + πf

]
+
[
b(z)− f

]
and x2 ≤ y + πf. (1.2.14)

These inequalities follow from replacing income with y + πf and benefits with b(z) − f in (1.2.10).

Increasing f tightens the first inequality, and relaxes the second, making it possible for the household

to use benefit fraud to afford a larger quantity of non-food.

Example 1.7. Suppose that the household has $50 in income y and $100 in benefits b(z). Here, in the

absence of benefit fraud, the household can afford a bundle x ∈ R̄ if, and only if:

px1 + x2 ≤ 150 and x2 ≤ 50. (1.2.15)

Further suppose that the discount factor π is 0.5, as in Example 1.4. If the household exchanges all

$100 of its benefits, its income will increase to $50 + 0.5× $100 = $100, and its benefits will decrease to

$100− $100 = $0. Thus, after exchanging all of its benefits, it can afford a bundle x ∈ R̄ if, and only if:

px1 + x2 ≤ 100 and x2 ≤ 100. (1.2.16)

4

1.2.4 Preferences

The household has preferences over the bundles in the consumption set R̄. Its preferences are summarized

by a utility function u(·) on R̄. For each v ∈ R, let G(v) = {x ∈ R̄ : u(x) = v} denote the subset of

bundles that attain a utility level of v. Let R denote the interior of R̄.

Assumption 1.6.

(i) Utility u(·) is twice-continuously-differentiable on R.

(ii) Utility u(·) is strictly increasing with strictly positive partial derivatives on R.
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(iii) Utility u(·) is strongly quasi-concave on R:

ξ′
∂2u(x)

∂x∂x′
ξ < 0,

for every ξ ∈ R2 such that ξ 6= 0 and ξ′ ∂u(x)
∂x = 0, at each x ∈ R.

(iv) For each v ∈ R such that v 6= u(0), G(v) is contained in R.

Assumption 1.6(i) assumes that preferences are smooth (see Proposition 2.3.9 in Mas-Colell, 1985).

Assumption 1.6(ii) says that more is strictly better. Assumptions 1.6(i) and 1.6(ii) imply that G(v) is an

indifference curve, and twice-continuously-differentiable, if non-empty.4 Assumption 1.6(iii) says that

this indifference curve is strictly convex. Assumption 1.6(iii) implies strict quasi-concavity, a common

assumption that requires the upper contour sets of the utility function to be strictly convex (Ginsberg,

1973). In other words, strong quasi-concavity implies that averages are strictly better than extremes. The

converse does not hold because strict quasi-concavity allows for indifference curves to have zero curvature

on nowhere-dense sets. Assumption 1.6(iv) says that the boundary of R̄ is undesirable. Intuitively, the

household prefers bundles with strictly positive quantities of both food and non-food, over bundles that

do not. Assumption 1.6 is standard (see pages 415 to 416 in Katzner, 1968 and Sections 11 and 12 in

Barten and Böhm, 1993).

Example 1.8. Suppose that the household has a Stone-Geary utility function, defined by: u(x) =
√
x1x2, for every x ∈ R̄. This utility function satisfies Assumption 1.6: First, note that, its first-order

partial derivatives are well-defined and strictly positive:

∂u(x)

∂x1
=

√
x2

4x1
> 0 and

∂u(x)

∂x2
=

√
x1

4x2
> 0, (1.2.17)

at every x ∈ R. Moreover, the condition in Assumption 1.6(iii) equals:

ξ′
∂2u(x)

∂x∂x′
ξ = −ξ

2
1

4

√
x2

x3
1

− ξ2
2

4

√
x1

x3
2

+
ξ1ξ2

2

√
1

x1x2
, (1.2.18)

for every x ∈ R, where ξj denotes the jth component of ξ. The condition ξ′ ∂u(x)
∂x = 0 is equivalent to

ξ1 = −ξ2x1/x2. Therefore:

ξ′
∂2u(x)

∂x∂x′
ξ = −ξ2

2

√
x1

x3
2

, (1.2.19)

for every ξ ∈ R2 such that ξ 6= 0 and ξ′ ∂u(x)
∂x = 0, at each x ∈ R. Since ξ 6= 0 and ξ′ ∂u(x)

∂x = 0

implies ξ2 6= 0, this expression is strictly negative. Last, note, for every v > 0, the indifference curve

G(v) =
{
x ∈ R̄ : x1x2 = v2

}
⊂ R does not intersect the boundary of the budget set. 4

4If empty, the value v ∈ R is outside the range of utility u(·), and G(v) is not an indifference curve.
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1.2.5 Demand

The household is faced with the problem of choosing a bundle x ∈ R̄, and an amount of fraud f ∈ [0, b(z)].

I assume that the design z and parameter θ = (b, π, u) are fixed, and that the household maximizes utility

u(·). To be precise, let xθ(z) denote its demand for goods, let fθ(z) denote its demand for fraud, and

consider the following assumption:

Assumption 1.7.

(i) The design z and parameter θ are exogenous to the household.

(ii) The demands, xθ(z) and fθ(z), solve the following utility maximization problem:

max
(x,f)

u(x) subject to 0 ≤ x1, 0 ≤ x2,

0 ≤ f ≤ b(z), px1 + x2 ≤
[
y + πf

]
+
[
b(z)− f

]
, and x2 ≤ y + πf.

(1.2.20)

Assumption 1.7(i) implies that utility u(·) is exogenous to the household, ruling out endogenous pref-

erences that can be affected by, say, the policy (see Bowles, 1998, for a broad discussion of endogenous

preferences, and Hastings et al., 2020, for a relevant analysis of the effect of benefits on the composition of

purchased foods). Assumption 1.7(ii) implies that the household will commit fraud if it has an immediate

incentive to do so. This assumption is a strong behavioural restriction. In practice, the household (i)

might not be able to find a retailer to collude with, (ii) might have an aversion to fraud, or (iii) might

solve a dynamic optimization problem that explicitly accounts for the negative consequences associated

with getting caught. (If a household is caught, it can be disqualified from receiving benefits, but benefits

are considered a right, meaning that a lot of evidence is needed to disqualify a household. Therefore, in

practice, very few households are disqualified.) Recall, this model is intended to serve as a benchmark.

1.2.6 The Budget Set

The utility maximization problem in (1.2.20) is somewhat complicated. We can simplify this maximiza-

tion problem by using the fact that fraud f does not enter the objective function. But, in order to

simplify this problem, we first need to characterize the set of all bundles in R̄ that satisfy the budget

constraints in (1.2.14), for some f ∈ [0, b(z)].

Consider the following result:

Lemma 1.1. There exists f ∈ [0, b(z)] that satisfies (1.2.14) given (z, b, π) if, and only if:

px1 + x2 ≤ y + b(z) and x2 ≤ y +
[
b(z)− px1

]
π. (1.2.21)

Proof. See Appendix 1.B.2.
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y+b(z)
p

y + πb(z)

y+πb(z)
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p

Figure 1.2. The Budget Set. The red and green regions characterize the subset of R̄ for which px1 +
x2 ≤ y+ b(z). The blue and green regions characterize the subset of R̄ for which x2 ≤ y+ [b(z)− px1]π.
The budget set B(z, b, π) is the green region.

Lemma 1.1 says that the household can afford a bundle x ∈ R̄, with some amount of fraud f ∈ [0, b(z)]

if, and only if, (i) the entire bundle costs less than income y and benefits b(z), and (ii) after scaling the

price of food p by the discount factor π, the entire bundle costs less than income y and scaled benefits

πb(z). From now on, I let:

B(z, b, π) =
{
x ∈ R̄ : (1.2.21) holds given (z, b, π)

}
, (1.2.22)

denote the household’s budget set—that is, the set of bundles in R̄ that the household can afford with

fraud given (z, b, π). I illustrate the form of this set in Figure 1.2. The household’s budget set is kinked

if, and only if, b(z) > 0. Kinked budget sets are common in applied economic settings—for instance,

piecewise tax schedules, wholesale pricing, and two-part tariffs can all produce kinks (see Chapter 1 in

Deaton and Muellbauer, 1980b, and Chapter 2.D in Mas-Colell et al., 1995, for some textbook examples,

Blomquist et al., 2015, for a more recent application with taxable income, as well as Landais, 2015, for a

more recent application with employment insurance). There are two limiting cases that are not allowed

under Assumption 1.5: π = 0 and π = 1. In the first limiting case, the household cannot exchange its

benefits for cash and the budget constraints in (1.2.21) reduce to the standard constraints in (1.2.10).

In the second limiting case, there is no cost to an exchange (making benefits as good as cash) and the

budget constraints in (1.2.21) reduce to px1 + x2 ≤ y + b(z), as expected.

The budget set has a number of important properties:

Lemma 1.2. The budget set B(z, b, π) is non-empty, compact, and convex.

Proof. See Appendix 1.B.3.

Lemma 1.2 implies that (i) the household can always afford a bundle (guaranteeing that it never

faces a trivial decision), (ii) it can always afford the “limit” of affordable bundles, (iii) it can only afford

finite-valued bundles, and (iv) it can always afford the convex combination of affordable bundles.
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Example 1.7 (Continued). Suppose that the household has $50 in income y and $100 in benefits b(z),

and that the discount factor π is 0.5. It can afford a bundle x ∈ R̄ if, and only if:

px1 + x2 ≤ 150 and 0.5px1 + x2 ≤ 100. (1.2.23)

4

1.2.7 Properties of Demand

We can now use the budget set to rewrite the utility maximization problem in (1.2.20), and characterize

the properties of the demand functions, xθ(·) and fθ(·), given θ = (b, π, u).

Proposition 1.2. Under Assumptions 1.1 to 1.3 and 1.5 to 1.7, demand xθ(z) solves:

max
x

u(x) subject to x ∈ B(z, b, π). (1.2.24)

Proof. This result follows directly from Lemma 1.1, and the fact that f does not enter the objective

function in the utility maximization problem in (1.2.20).

Proposition 1.2 implies that, if we are interested in demand xθ(·), then, instead of solving the utility

maximization problem in (1.2.20) for xθ(·) and fθ(·), we can solve the well-behaved optimization problem

in (1.2.24). Useful properties of demand xθ(·) follow from the fact that we are now simply maximizing

u(·) over a non-empty, compact, and convex set.

Let g(·; z, b, π) denote the boundary of the budget set, defined by:

x2 = g(x1; z, b, π) ≡ min
{
y + b(z)− px1, y +

[
b(z)− px1

]
π
}
, (1.2.25)

for every 0 ≤ x1 ≤ y+b(z)
p . For every quantity of food x1 in this range, g(·; z, b, π) outputs the largest

quantity of non-food x2 that the household can afford given (z, b, π). Furthermore, when xθ(·) is single-

valued, I let xθ,j(z) denote the jth component of xθ(z).

Proposition 1.3. Under Assumptions 1.1 to 1.3 and 1.5 to 1.7:

(i) Demand xθ(·) is well-defined, single-valued, and strictly positive, given θ, on R2
++.

(ii) Budget exhaustion: xθ,2(z) = g(xθ,1(z); z, b, π).

Proof. See Appendix 1.B.4.

Proposition 1.3(i) implies that xθ(·) is a positive function. Proposition 1.3(ii)—a variation of Walras’

Law (Walras, 1874)—says that the household spends all of its income y, and spends or exchanges (and

subsequently spends) all of its benefits b(z).



www.manaraa.com

Chapter 1. Food Stamp Fraud 14

Corollary 1.1. Under Assumptions 1.1 to 1.3 and 1.5 to 1.7:

fθ(z) =
[
b(z)− pxθ,1(z)

]+
, (1.2.26)

for every z ∈ R2
++, and demand for fraud fθ(·) is well-defined and single-valued on R2

++.

Proof. See Appendix 1.B.5.

Intuitively, if the household does not spend all of its benefits b(z) on food, it will have b(z)−pxθ,1(z)

in benefits left to exchange for cash. Corollary 1.1 implies that fθ(·) is a non-negative function, outputing

this amount, whenever it is positive. The form in (1.2.26) directly implies that the chosen amount of fraud

fθ(z) can be deduced from only the knowledge of the benefit amount b(z) and food expenditure pxθ,1(z).

1.2.8 The Regimes

In the absence of benefits, the utility maximization problem in (1.2.24) reduces to the standard utility

maximization problem in economics under a linear budget constraint:

max
x

u(x) subject to 0 ≤ x1, 0 ≤ x2, and px1 + x2 ≤ y. (1.2.27)

Let xu(z) denote the household’s standard demand for goods given z and u(·)—that is, the subset of

bundles in R̄ that solve the optimization problem in (1.2.27) given z and u(·). Because (1.2.27) is a

special case of (1.2.24), the properties of xθ(·) translate into properties of xu(·): Under Assumption 1.6,

xu(·) is well-defined, single-valued, strictly positive, and it satisfies Walras’ law. It is also known that,

under Assumption 1.6, the implicit function theorem implies that xu(·) is continuously-differentiable on

R2
++ (see Section 2.2.2 in Chapter 2 for a discussion and a proof in the case of two goods). If we were

to replace strong quasi-concavity with strict quasi-concavity, xu(·) would be continuously-differentiable

on a dense open subset, but not necessarily everywhere (see Katzner, 1968). This standard utility

maximization problem has been studied in detail (see Chapter 3.D in Mas-Colell et al., 1995). When

xu(·) is single-valued, I let xu,j(z) denote the jth component of xu(z).

Standard demand xu(·) can be used to construct a closed-form expression for demand xθ(·):

Proposition 1.4. Define φ(z) ≡ y + πb(z). Under Assumptions 1.1 to 1.3 and 1.5 to 1.7:

xθ(z) =


xu(ψ(z), p), if b(z)

p < xu,1(ψ(z), p),( b(z)
p , y

)′
, if xu,1(ψ(z), p) ≤ b(z)

p ≤ xu,1(φ(z), πp),

xu(φ(z), πp), if b(z)
p > xu,1(φ(z), πp),

(1.2.28)

given θ on R2
++.
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Figure 1.3. The Regimes. On the left, I illustrate B(z, b, π) when b(z) > 0. On the right, I illustrate
demand for food in (1.2.29) given p = 1

2 . Demand xθ(·) is in the first regime if it is on a blue segment,
the second regime if it is on a red segment, and the third regime if it is on a green segment. On the
right, the black line denotes standard food demand xu,1(·).

Proof. See Appendix 1.B.6.

There are three distinct regimes: In the first regime, defined by b(z)/p < xu,1(ψ(z), p), the house-

hold buys more than b(z)/p units of food; in the second regime, defined by xu,1(ψ(z), p) ≤ b(z)/p ≤

xu,1(φ(z), πp), it buys exactly b(z)/p units of food; in the third regime, defined by b(z)/p > xu,1(φ(z), πp),

it buys less than b(z)/p units of food (see the left of Figure 1.3 for an illustration). Of course, there is

a fourth regime, defined by b(z) = 0, but this regime is a subset of the first regime. Now, recall that

there are two limiting cases that are not considered under Assumption 1.5: π = 0 and π = 1. Intuitively,

because xu,1(φ(z), πp) gets large as the discount factor π gets arbitrarily close to 0, the third regime is

empty in the first limiting case. In the second limiting case, we obtain: xθ(z) = xu(ψ(z), p).

Example 1.8 (Continued). Suppose that the household has a Stone-Geary utility function, defined by:

u(x) =
√
x1x2, for every x ∈ R̄. Under this specification, standard demand has the form: xu(z) =(

y
2p ,

y
2

)′
, for each z ∈ R2

++. Further suppose that the policy b(·) has the form with fixed prices in (1.2.6)

subject to γ2 < 1. Proposition 4 yields:

xθ(z) =



(
y
2p ,

y
2

)′
, if y > γ1

γ2
,(γ1+y(1−γ2)

2p , γ1+y(1−γ2)
2

)′
, if γ1

1+γ2
< y ≤ γ1

γ2
,(

γ1−γ2y
p , y

)′
, if πγ1

1+πγ2
≤ y ≤ γ1

1+γ2
,(πγ1+y(1−πγ2)

2πp , πγ1+y(1−πγ2)
2

)′
, if y < πγ1

1+πγ2
.

(1.2.29)

There are four cases: In the first case, defined by y > γ1/γ2, the household does not receive any benefits.

The remaining three cases characterize the first, second, and third regimes, in order, given b(z) > 0. The

household’s demand for food xθ,1(·) is strictly increasing in income y in the first and third regimes, and

strictly decreasing in income y in the second regime (see the right of Figure 1.3). Under Assumptions
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1.1 to 1.7, we obtain this result whenever food is a normal good—specifically, whenever standard food

demand xu,1(·) is strictly increasing in income y, given p. Moreover, we can use Corollary 1.1 to find

the household’s demand for fraud:

fθ(z) =

[
πγ1 − (1 + πγ2)y

2π

]+

, (1.2.30)

for every z ∈ R2
++. This function is strictly decreasing in income y when it is strictly positive. Again,

this result does not depend on the chosen policy b(·), but on the fact that food is a normal good. This

result implies that, if food is a normal good, then we can reduce demand for fraud fθ(·) with an in-cash

transfer. Of course, if implemented without care, this type of transfer can distort the ranking of eligible

households of the same size with respect to purchasing power in the population. Any reasonable transfer

scheme must ensure that total income ψ(·) is strictly increasing in income y. 4

Remark 1.2. Let Rθ,j denote the subset of z ∈ R2
++ at which demand xθ(·) is in the jth regime.

Since, under Assumptions 1.1 to 1.7, the policy b(·) and standard demand xu(·) are continuous (see

Propositions 1.1 and 1.3), the form of demand xθ(·) in Proposition 1.4 implies:

(i) Rθ,1 and Rθ,2 have a shared boundary.

(ii) Rθ,2 and Rθ,3 have a shared boundary.

(iii) Rθ,1 and Rθ,3 do not have a shared boundary.

Note that, Assumptions 1.1 to 1.3 and 1.5 to 1.7 are not sufficient for this property to hold: If the policy

b(·) experiences a large jump when income y reaches the threshold c(p), demand xθ(·) can go straight

from the first regime to the third. Under Assumptions 1.1 to 1.7, the boundaries between the regimes

are characterized by the “upper” and “lower” boundaries of the second regime, where these boundaries

are curves in R2
++.

Example 1.8 (Continued). Figure 1.4 illustrates Remark 1.2 using the regimes associated with the

demand function xθ(·) in (1.2.29) given the policy b(·) in Example 1.2. Recall, this policy is continuous

if γ3 = γ1/γ2. I illustrate the sets Rθ,j given γ3 = γ1/γ2 on the left in Figure 1.4. In this figure, we can

see that, the property in Remark 1.2 holds as long as γ3 is strictly smaller than πγ1
1+πγ2

. I illustrate the

sets Rθ,j given γ3 = πγ1
1+πγ2

on the right in Figure 1.4. In this case, the first and third regimes have a

shared boundary, and the second regime is empty. Intuitively, since only the poorest households have

an incentive to commit fraud, if the threshold γ3 is extremely small, as in this figure, the household will

commit fraud as soon as it is eligible to receive positive benefits. 4
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γ3 =
γ1
γ2

γ1
1+γ2

πγ1
1+πγ2

p

y

Rθ,1

Rθ,2

Rθ,3

γ3 =
πγ1

1+πγ2

p

y

Rθ,1

Rθ,3

Figure 1.4. Adjacent Regimes. These figures illustrate the regimes associated with xθ(·) in (1.2.29)
given b(·) in Example 1.2 for different values of γ3. On the left, the regimes have the “order” in Remark
1.2. Hatched regions denote the sets of z on which b(z) = 0. Red lines denote boundaries of regimes.
Blue lines denote sets of z on which y = c(p).

1.2.9 Expenditure with Benefit Fraud

Although, in practice, we may not observe income y, we usually observe food expenditure eθ,1(z), non-

food expenditure eθ,2(z), and total expenditure eθ(z), related by the equation:

eθ(z) = eθ,1(z) + eθ,2(z) = pxθ,1(z) + xθ,2(z). (1.2.31)

The following result implies that we can use these expenditures to characterize the regimes:

Proposition 1.5. Under Assumptions 1.1 to 1.3 and 1.5 to 1.7:

(i) z ∈ Rθ,1 if, and only if, eθ,1(z) > b(z), eθ,2(z) < y, and eθ(z) = y + b(z).

(ii) z ∈ Rθ,2 if, and only if, eθ,1(z) = b(z), eθ,2(z) = y, and eθ(z) = y + b(z).

(iii) z ∈ Rθ,3 if, and only if, eθ,1(z) < b(z), eθ,2(z) > y, and y + πb(z) < eθ(z) < y + b(z).

Proof. See Appendix 1.B.7.

In the first regime, the household spends more than b(z) on food, less than y on non-food, and exactly

y+ b(z) in total; in the second regime, it spends exactly b(z) on food, exactly y on non-food, and exactly

y+ b(z) in total; in the third regime, it spends less than b(z) on food, more than y on non-food, and an

amount more than y + πb(z), but less than y + b(z) in total.

Example 1.8 (Continued). Suppose that the household has a Stone-Geary utility function, defined by:

u(x) =
√
x1x2, for every x ∈ R̄. Further suppose that the policy b(·) has the form with fixed prices in

(1.2.6) subject to γ2 < 1. Under these specifications, demand xθ(·) has the form in (1.2.29). Thus, total
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expenditure eθ(·) has the following form:

eθ(z) =


y, if y > γ1

γ2
,

γ1 + (1− γ2)y, if πγ1
1+πγ2

≤ y ≤ γ1
γ2
,

(1+π)(πγ1+(1−πγ2)y)
2π , if y < πγ1

1+πγ2
.

(1.2.32)

There are three cases: the first case coincides with the first case in (1.2.29); the second case coincides

with the second and third cases in (1.2.29); the third case coincides with the fourth case in (1.2.29).

The second and third cases in (1.2.29) are grouped together here, because, in each of these cases,

eθ(z) = y + b(z) and b(z) > 0. In the third case:

y + πb(z) = πγ1 + (1− πγ2)y < eθ(z) < γ1 + (1− γ2) = y + b(z), (1.2.33)

implying that the inequalities in Proposition 1.5(iii) hold. The first inequality in (1.2.33) holds because

π < 1, and the second inequality in (1.2.33) holds whenever y < πγ1
1+πγ2

. 4

1.2.10 Income Effects

We will sometimes need more structure for identification or non-parametric estimation. In this section,

I assume that food and non-food are normal goods, and discuss the implication of this assumption on

the effect of a change in income y on demand xθ(·).

Assumption N. Standard demand xu(·) is strictly increasing in y, given p, on R++.

Without Assumption N, there exists a good j = 1, 2 where standard demand xu,j(·) is increasing in

y, at each z ∈ R2
++, but this property does not necessarily hold for this good at every z ∈ R2

++, and it

does not necessarily hold for both goods. In general, it is not reasonable to assume that a good is normal

when it is extremely disaggregate, but can be reasonable for some aggregate goods, especially when they

aggregate a lot of goods of the same type with all levels of quality (see the discussion of normal goods on

page 25 of Mas-Colell et al., 1995). There are substitutes for goods classified as “food”—for instance, hot

meals prepared for immediate consumption are classified as “non-food” (see Appendix 1.A.8)—but goods

classified as “food” are primarily staples (e.g., bread, vegetables, milk, meat), making it difficult to find

a natural substitute. A large change in income could lead to a household substituting goods classified

as “food” for prepared meals, but, in my application, I restrict the sample to relatively poor households,

making this possibility less of a concern. Assumption N holds under some well-known conditions, such

as homotheticity—that is, it is sufficient for utility u(·) to be homogeneous of degree one (see Leroux,

1987, for an alternative sufficient condition concerning the partial derivatives of utility). Assumption

N is helpful because, if we consider it together with Assumption 1.4, then, as income goes up, we will

pass between regimes, but never leave and then re-enter a regime (see Figure 1.4). In most cases where
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Assumption N is needed, we will actually only need food to be a normal good; I will make it clear when

we also need non-food to be a normal good.

Proposition 1.6. Under Assumptions 1.1 to 1.7, and N, demand for food xθ,1(·) is strictly increasing

in y on Rθ,1 ∪ Rθ,3, and non-increasing in y on Rθ,2. Moreover, demand for non-food xθ,2(·) is strictly

increasing in y on R2
++.

Proof. This result follows from Proposition 1.4, Assumption N, and the fact that, under Assumption

1.4, ψ(z) = y + b(z) and φ(z) = y + πb(z) are strictly increasing in y.

Proposition 1.6 says that demand for food xθ,1(·) is strictly increasing in income y if, and only if, it is

in the first or third regimes, and that demand for non-food xθ,2(·) is strictly increasing everywhere. The

first property can be seen on the right of Figure 1.3: If the household is extremely poor, it will consume

on the green segment; as income increases, demand for food increases; when we hit the red segment,

demand for food begins to decrease; when we hit the blue segment, demand for food begins to increase

again, and continues indefinitely.

1.2.11 Differentiability of Demand

Assumption N provides the structure we need to make precise statements about the differentiability of

demand xθ(·) with respect to income y. Consider the following result:

Proposition 1.7. Under Assumptions 1.1 to 1.7, and N, demand xθ(·) is continuously-differentiable at

z ∈ R2
++ with respect to y, given p, if it is not on the boundary of a regime, and y 6= c(p). Demand

xθ(·) is not differentiable on the boundary of any regime, and, if the policy b(·) is not differentiable at

some z ∈ R2
++, then neither is demand xθ(·).

Proof. See Appendix 1.B.8.

Proposition 1.7 ensures that there are no “jumps” in the rate at which demand xθ(·) changes from

a change in income y if demand xθ(·) is not on the boundary of a regime and income y is not at the

threshold c(p). Proposition 1.7 implies that demand xθ(·) is not differentiable along two curves in R2
++:

the upper and lower boundaries of the second regime (see Remark 1.2). Moreover, it implies that demand

xθ(·) is not differentiable when y hits the threshold c(p) if, and only if, the policy b(·) is not differentiable

at this point, producing a third curve on which demand xθ(·) may not be differentiable. To illustrate, on

the left of Figure 1.4, demand xθ(·) is continuously-differentiable everywhere except the three coloured

curves, in which the red curves denote the boundaries of the regimes, and the blue curve denotes the

curve characterized by y = c(p). Proposition 1.7 relies on the discount factor π being strictly smaller

than 1—in the limiting case for which π = 1, demand xθ(z) coincides with standard demand xu(ψ(z), p),
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γ1
γ2

γ1
1+γ2

πγ1
1+πγ2

1
2p

1−γ2
2p

−γ2
p

1−πγ2
2πp

y0

x1

Figure 1.5. Derivative of Demand. This figure illustrates the partial derivative of demand for food
xθ,1(·) in (1.2.29) with respect to income y. Demand xθ(·) is in the first regime if the partial derivative
is on the blue segment, the second regime if it is on the red segment, and the third regime if it is on
the green segment. On the right, the black line is the partial derivative of standard food demand with
respect to income y.

ensuring that it is continuously-differentiable at z ∈ R2
++ if, and only if, the policy b(·) is continuously-

differentiable at z. Differentiability is not needed for most of the results that follow, but it makes the

argument in the next section easier, and it makes non-parametric estimation possible.

Example 1.8 (Continued). Suppose that the household has a Stone-Geary utility function, defined by:

u(x) =
√
x1x2, for every x ∈ R̄. Further suppose that the policy b(·) has the form with fixed prices in

(1.2.6) subject to γ2 < 1. For every z ∈ R2
++ with y not equal to γ1

γ2
, γ1

1+γ2
, or πγ1

1+πγ2
, we obtain:

∂xθ(z)

∂y
=



(
1
2p ,

1
2

)′
, if y > γ1

γ2
,(

1−γ2
2p , 1−γ2

2

)′
, if γ1

1+γ2
< y < γ1

γ2
,(−γ2

p , 1
)′
, if πγ1

1+πγ2
< y < γ1

1+γ2
,(

1−πγ2
2πp , 1−πγ2

2

)′
, if y < πγ1

1+πγ2
.

(1.2.34)

Demand xθ(·) is, therefore, not differentiable at any z ∈ R2
++ with y equal to γ1

γ2
, γ1

1+γ2
, or πγ1

1+πγ2
. The

partial derivatives of demand xθ(·) in (1.2.34) are illustrated in Figure 1.5. 4

1.2.12 Invertibility of Total Expenditure

Propositions 1.6 and 1.7 provide the foundation for a useful result: the invertibility of total expenditure

eθ(·) in income y. Let w = (e, p) denote a pair of expenditure and price.

Proposition 1.8. Under Assumptions 1.1 to 1.7, and N, there exists a function y∗θ(·) where eθ(y
∗
θ(w), p) =

e on the set of admissible values for the pair w = (e, p) in R2
++. This function is continuous and strictly

increasing in e on this set.

Proof. See Appendix 1.B.9.
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I refer to y∗θ(·) as the pseudo-income function. Intuitively, y∗θ(e, p) denotes an amount of income y

at which the household spends exactly e in total, given p. By Proposition 1.8, this amount is unique,

continuous, and strictly increasing in total expenditure e. In the absence of benefits, the pseudo-income

function y∗θ(·) coincides with total expenditure e, a direct implication of Walras’ law. Once again, let

us discuss the two limiting cases that are not considered under Assumption 1.5: π = 0 and π = 1. This

discussion will help us understand what to expect for small and large values of the discount factor π,

and help us compare with the standard model of consumption under a linear budget constraint in the

absence of benefits and fraud. Recall, (i) in the first limiting case, the third regime is empty, and (ii) in

the second limiting case: xθ(z) = xu(ψ(z), p). Therefore, in each limiting case, total expenditure eθ(·)

coincides with total income ψ(·), so that the pseudo-income function y∗θ(·) coincides with the inverse of

total income ψ(·) given p—specifically, it coincides with the amount of income y that produces ψ(z) = e.

Example 1.8 (Continued). Suppose that the household has a Stone-Geary utility function, defined by:

u(x) =
√
x1x2, for every x ∈ R̄. Further suppose that the policy b(·) has the form in (1.2.6) subject to

γ2 < 1. By inverting total expenditure eθ(·), we obtain:

y∗θ(w) =


e, if e > γ1

γ2
,

e−γ1
1−γ2 , if (1+π)γ1

1+πγ2
≤ e ≤ γ1

γ2
,

2πe−π(1+π)γ1
(1+π)(1−πγ2) , if (1+π)γ1

2 < e < (1+π)γ1
1+πγ2

,

(1.2.35)

There are three cases: Each case coincides with the respective case in (1.2.32). In the first case, income

y coincides with total expenditure e because the household does not get benefits; in the second case,

income y is smaller than total expenditure e because the household is spending a positive amount of

benefits; in the third case, income y is smaller than total expenditure e, but not by as much as in the

second case, because the household “loses” a portion of its benefits when it exchanges them for cash.

The lower bound on e in the third case follows from the fact that total expenditure eθ(z) tends to the

ratio (1+π)γ1
2 as income y tends to zero, while holding all other variables constant. 4

Proposition 1.8 is used in Section 1.3.3, where we observe total expenditure e, but not income y.

When income y is not observed, it is natural to think of demand xθ(·) as a function of total expenditure

e, instead of income y, but we can only think about it in this way if there exists a bijection y∗θ(·) between

e and y, given p.5 When this bijection exists, as in Proposition 1.8, I write:

b∗θ(w) ≡ b(y∗θ(w), p), x∗θ(w) ≡ xθ(y∗θ(w), p), f∗θ (w) ≡ fθ(y∗θ(w), p). (1.2.36)

I refer to these objects as the pseudo-policy, pseudo-demand, and pseudo-fraud functions, respectively.

These functions differ from their counterparts introduced in Sections 1.2.1 and 1.2.5 because they depend

5This type of reformulation is common in the revealed preference literature. In a standard framework (without benefits
or fraud), this reformulation is trivial. In the current framework, we need Assumption N to ensure invertibility.
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on total expenditure e, rather than income y. Since y∗θ(·) is a bijection given p, it is equivalent to have

knowledge of xθ(·), or y∗θ(·) and x∗θ(·).

Under Assumptions 1.1 to 1.7, and N, pseudo-demand x∗θ(·) adopts many of the properties of demand

xθ(·)—it is well-defined, single-valued, strictly positive, and it satisfies a variant of Walras’ law such that:

px∗θ,1(w) + x∗θ,2(w) = e, (1.2.37)

at every admissible w ∈ R2
++, where x∗θ,j(w) denotes the jth component of x∗θ(w). It is also continuously-

differentiable at some admissible w ∈ R2
++ with respect to total expenditure e, given p, if it is not on

the boundary of a regime, and not differentiable on the boundary of any regime. To be clear, if pseudo-

demand x∗θ(·) is not on the boundary of a regime, then it is continuously-differentiable in total expenditure

e, even if demand xθ(·) is not differentiable at (y∗θ(w), p)′. Intuitively, this lack of differentiability follows

from the fact that pseudo-demand x∗θ,1(·) forms a ridge along the boundary of the third regime, and a

valley along the boundary of the first regime. (This terminology is taken from differential geometry.)

We can also use standard demand xu(·) to construct a closed-form expression for pseudo-demand x∗θ(·),

as in Section 1.2.8:

Corollary 1.2. Define total income evaluated at pseudo-income ψ∗θ(w) ≡ y∗θ(w)+b∗θ(w) and the amount

φ∗θ(w) ≡ y∗θ(w) + πb∗θ(w). Under Assumptions 1.1 to 1.7, and N:

x∗θ(w) =


xu(ψ∗θ(w), p), if

b∗θ(w)
p < xu,1(ψ∗θ(w), p),( b∗θ(w)

p , y∗θ(w)
)′
, if xu,1(ψ∗θ(w), p) ≤ b∗θ(w)

p ≤ xu,1(φ∗θ(w), πp),

xu(φ∗θ(w), πp), if
b∗θ(w)
p > xu,1(φ∗θ(w), πp),

(1.2.38)

given θ, at every admissible w ∈ R2
++.

Proof. This result follows from replacing income y with y∗θ(w) in Proposition 1.4.

Corollary 1.2 is an analogue of the result regarding the form of demand xθ(·) in Proposition 1.4 for

pseudo-demand x∗θ(·). The regimes in Corollary 1.2 coincide with the regimes in Proposition 1.4, but

the regimes are now associated with values of w = (e, p), instead of z = (y, p). Let Wθ,j denote the set

of admissible w ∈ R2
++ at which pseudo-demand x∗θ(·) is in the jth regime. Note, by definition, w ∈Wθ,j

if, and only if, (y∗θ(w), p)′ ∈ Rθ,j .

Corollary 1.3. Under Assumptions 1.1 to 1.7, and N, pseudo-demand for food x∗θ,1(·) is strictly in-

creasing in e on Wθ,1 ∪Wθ,3, and non-increasing in e on Wθ,2. Moreover, pseudo-demand for non-food

x∗θ,2(·) is strictly increasing in e at all admissible w ∈ R2
++.

Proof. This result follows from Proposition 1.6, the definition of pseudo-demand x∗θ(·) in (1.2.36), and

the fact that, by Proposition 1.8, pseudo-income y∗θ(·) is strictly increasing in e.
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2γ1
1+γ2

(1+π)γ1
1+πγ2

(1+π)γ1
2

p
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Wθ,1

Wθ,2

Wθ,3

Figure 1.6. The Regimes of Pseudo-Demand. This figure illustrates the regimes associated with
x∗θ(·) in (1.2.40) given the policy b(·) with fixed prices in (1.2.6). Red lines denote boundaries of regimes.
Pairs w = (e, p) in the hatched region are inadmissible.

Corollary 1.3 is an analogue of Proposition 1.6. I state this result formally because it is essential

for some of the identification results in Section 1.3.3. Corollary 1.3 implies that we can use expenditure

effects to characterize each of the regimes. In particular, we can use the curves on which pseudo-demand

x∗θ(·) is not differentiable to partition the set of all admissible pairs w ∈ R2
++ into three subsets (which

coincide with the regimes), then determine which set is which regime using Corollary 1.3 and what we

know about the relationship between the regimes (see Section 1.3.3 for a rule that can be used to classify

the elements of this partition).

Example 1.8 (Continued). Suppose that the household has a Stone-Geary utility function, defined by:

u(x) =
√
x1x2, for every x ∈ R̄. Further suppose that the policy b(·) has the form with fixed prices in

(1.2.6) subject to γ2 < 1. If we plug the pseudo-income function y∗θ(·) in (1.2.35) into the policy b(·), then:

b∗θ(w) =


0, if e > γ1

γ2
,

γ1−γ2e
1−γ2 , if (1+π)γ1

1+πγ2
≤ e ≤ γ1

γ2
,

(1+π)γ1−2πeγ2
(1+π)(1−πγ2) , if (1+π)γ1

2 < e < (1+π)γ1
1+πγ2

.

(1.2.39)

Each case above coincides with the respective case in (1.2.35). There are more cases in (1.2.39) than in

the policy b(·) because the form of expenditure eθ(·) changes when demand xθ(·) enters the third regime.

Likewise, if we plug the pseudo-income function y∗θ(·) in (1.2.35) into the demand function in (1.2.29),

then we obtain:

x∗θ(w) =


(
e
2p ,

e
2

)′
, if e > 2γ1

1+γ2
,(

γ1−γ2e
p(1−γ2) ,

e−γ1
1−γ2

)′
, if (1+π)γ1

1+πγ2
≤ e ≤ 2γ1

1+γ2
,(

e
(1+π)p ,

πe
1+π

)′
, if (1+π)γ1

2 < e < (1+π)γ1
1+πγ2

,

(1.2.40)

The pseudo-demand function x∗θ(·) has different regimes than in (1.2.35) and (1.2.39) because, unlike

y∗θ(·) and b∗θ(·), its form depends on the regime, not on whether benefits are zero or not—each case in
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(1.2.40) coincides with the respective regime in Proposition 1.4. Clearly, pseudo-demand for food x∗θ,1(·)

is strictly increasing in e in both the first and third regimes, and non-increasing in e in the third regime.

Finally, we can calculate:

f∗θ (w) =
[
b∗θ(w)− px∗θ,1(w)

]+
=

[
(1 + π)γ1 − (1 + πγ2)e

(1 + π)(1− πγ2)

]+

. (1.2.41)

While the form of the pseudo-fraud function f∗θ (·) differs from the form of the household’s demand for

fraud fθ(·) in (1.2.30), the pseudo-fraud function is non-increasing in total expenditure e, as demand for

fraud fθ(·) is non-increasing in y. This result follows from the fact that y∗θ(·) is strictly increasing in e. 4

Remark 1.3. It is worth noting that, if we were to construct a variant of the Slutsky matrix (see

Section 2.F in Mas-Colell et al., 1995, for a broad discussion of the Slutsky matrix, as well as Allen,

1936, for a summary of work by Slutsky, 1915) by replacing standard demand xu(·) with demand xθ(·) or

pseudo-demand x∗θ(·), the resulting matrix would not necessarily be symmetric or negative semi-definite.

Since these properties are used for integrability (see Samuelson, 1948, 1950, Hurwicz and Uzawa, 1971,

Hosoya, 2020, and Section 1.3.4), a model without benefits might incorrectly reject rationality, even in

the absence of fraud. Since only poor households receive benefits and only the poorest households have

an incentive to consume outside of the first regime, this result can explain why some researchers find that,

on average, poorer household are “less rational” (see, for example, Table 3 in Echenique et al., 2011).

1.3 Partial Non-Parametric Identification

Let us now consider the partial non-parametric identification of the functional parameter θ = (b, π, u),

and some functions that depend on θ such as the demand for fraud fθ(·). Our objects of interest are

latent, and do not depend on what we observe. In this section, I consider two observability assumptions:

In the first assumption, we observe income y, the price p, and demand xθ(z), at every z = (y, p) in some

set Z; in the second assumption, we no longer observe income y, but we observe total expenditure e, the

price p, and pseudo-demand x∗θ(w), at every w = (e, p) in some set W. While the general form of the

policy b(·) is known in practice, there are unobserved exclusions and deductions (see Appendices 1.A.4

and 1.A.6).6

1.3.1 Definition of Identification

Before moving forward, let us consider the definition of identification. This definition depends on what

we observe. For exposition, I provide the definition of identification for θ under the first observability

assumption: Assume that we observe the price p, income y, and demand xθ(·) over a set Z given θ. The

6If benefits are observed, as in the Panel Survey of Income Dynamics (see Appendix 1.E.1), the identification problem
becomes much easier.
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functional parameter θ is partially identified over a subset, say Z0×X0, if xθ(z) = xθ′(z), for every z ∈ Z,

implies (i) b(·) = b′(·) on Z0, (ii) π = π′, and (iii) u(·) = ϕ(·) ◦ u′(·) on X0, for some strictly increasing

function ϕ(·).7 In this definition, the set X0 simply denotes an arbitrary subset of the consumption set

R̄. Instead of defining what it means for an object to be identified whenever a new object or assumption

is introduced, I use the word “identified” colloquially to refer to this type of property. I focus on partial

identification because the existence of a policy b(·) rules out total identification (see Appendix 1.C). This

result has an important economic implication: We often need more information, or model structure, to

deduce the effect of a change in a policy on objects of interest, like welfare or fraud. Sections 1.3.2 and

1.3.3 consider the identification of several latent functional parameters under each of the observability

assumptions, starting with the case in which income y is observed. Section 1.3.4 considers, separately,

the partial non-parametric identification of utility u(·) under the identification of standard demand xu(·)

over some well-behaved set.

1.3.2 Identification when Income is Observed

Here, I consider the non-parametric identification of the regimes, policy b(·), discount factor π, standard

demand xu(·), and demand for fraud fθ(·) in the case in which income y is observed.

Observability Assumption

Recall, Rθ,j denotes the subset of z ∈ R2
++ at which demand xθ(·) is in the jth regime, as defined by the

form in Proposition 1.4. Consider the following assumption:

Assumption B.1.

(i) We observe z = (y, p) and xθ(z), at every z ∈ Z.

(ii) The set Z is open and path-connected.8

(iii) The observable component R∗θ,j ≡ Z ∩Rθ,j is non-empty, for j = 2, 3.

We do not observe benefits b(z). Assumption B.1(i) is a strong assumption because we rarely observe

income y, and it is näıve for us to think that we perfectly observe demand xθ(·). Indeed, households (i)

may not get benefits when eligible, and (ii) might misreport what they buy to hide fraud. In Section

1.3.3, I remove the assumption that income y is observed. Assumption B.1(ii) is mostly for simplicity; I

will make it clear when it is needed. Assumption B.1(iii) says that our dataset has consumptions on the

kink of the budget set, and fraudulent behaviours. Of course, this final restriction is needed because we

cannot expect to identify, say, the discount factor π, without any fraud.

7This definition of identification is deterministic. It can be seen as a special case of identification in a stochastic
framework. See Section 2 in Koopmans and Reiersøl (1950) and page 578 in Rothenberg (1971) for broad discussions, and
Section 1.4, for a stochastic treatment.

8Z is path-connected if, for any z, z′ ∈ Z, there exists h : [0, 1]→ Z with h(0) = z and h(1) = z′.
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Remark 1.4. Since the intersection of a finite number of open sets is open, Assumption B.1 implies that

R∗θ,1 and R∗θ,3 are open. The set R∗θ,2 is not open because Rθ,2 is closed, but R∗θ,2 always contains an open

subset that is dense in R∗θ,2, ensuring that the closure of its interior equals the closure of R∗θ,2. Therefore,

if we can identify a continuous function over the interior of R∗θ,2, then it is identified over R∗θ,2. Moreover,

each set R∗θ,j can be “disconnected,” even though, under Assumption B.1, Z is path-connected.

There are four steps to identification under this observability assumption: (i) identify the regimes,

(ii) identify the discount factor π, (iii) identify the policy b(·), and (iv) identify standard demand xu(·)

and demand for fraud fθ(·). The first step lays the foundation for the steps that follow; the second

step lays the foundation for the third; the third step lays the foundation for the fourth. As previously

mentioned, the identification of utility u(·) is considered, separately, in Section 1.3.4.

Identification of the Regimes

Before we can identify any latent functions of interest, we need to first identify the regimes.

Theorem 1.1. Under Assumptions 1.1 to 1.3, 1.5 to 1.7, and B.1:

(i) z ∈ R∗θ,1 if, and only if, eθ,2(z) < y,

(ii) z ∈ R∗θ,2 if, and only if, eθ,2(z) = y,

(iii) z ∈ R∗θ,3 if, and only if, eθ,2(z) > y,

for each z ∈ Z. Therefore, the sets R∗θ,j are identified and the regimes are observable.

Proof. This result follows from Proposition 1.5, and the fact that non-food expenditure:

eθ,2(z) = xθ,2(z), (1.3.1)

is observed, at every z ∈ Z.

Theorem 1.1 can be seen on the left in Figure 1.3: Since non-food expenditure eθ,2(z) equals demand

for non-food xθ,2(z), non-food expenditure eθ,2(z) is smaller than income y if demand xθ(·) is on the

blue segment, equal to income y if demand xθ(·) is on the red segment, and larger than income y if

demand xθ(·) is on the green segment. Since the household is committing fraud when demand xθ(·) is in

the third regime, Theorem 1.1 implies that we can identify the set of z ∈ Z on which demand for fraud

fθ(·) is positive.

Identification of the Discount Factor

We are now in a position to address the second step: the identification of the discount factor π. The

following result uses our knowledge of the regimes and their boundaries:
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Figure 1.7. The Observable Components of the Regimes. This figure illustrates the regimes
associated with xθ(·) in (1.2.29) given the policy b(·) with fixed prices in (1.2.6). The union of all
coloured regions is Z. The blue region is R∗θ,1; the red region is R∗θ,2; the green region is R∗θ,3. The
hatched region denotes the set of z on which b(·) equals 0.

Theorem 1.2. Under Assumptions 1.1 to 1.7, N, and B.1:

(i) There exists z0 = (y0, p0) ∈ Z at which demand xθ is on the boundary of Rθ,3.

(ii) The following equality holds:

π =

(
1

p0

)
1− ∂xθ,2(z0)/∂y−0

∂xθ,1(z0)/∂y−0 − ∂xθ,1(z0)/∂y+
0

, (1.3.2)

for any observable z0 ∈ Z on the boundary of Rθ,3.

Therefore, the discount factor π is identified.

Proof. See Appendix 1.B.10.

Theorem 1.2 says that we can deduce the rate at which the household can exchange its benefits b(z)

for cash. Theorem 1.2(i) follows from the properties of Z and the fact that we observe demand xθ(·)

in the first and second regimes. Intuitively, demand xθ(·) cannot jump from the second regime to the

third—it must cross their shared boundary. Theorem 1.2(ii) follows from the fact that the rate that

demand xθ(·) changes with respect to income y changes at this boundary, and that this change in the

rate depends on the discount factor π in a known way.

Example 1.8 (Continued). Suppose that the household has a Stone-Geary utility function, defined by:

u(x) =
√
x1x2, for every x ∈ R̄. Further suppose that the policy b(·) has the form with fixed prices in

(1.2.6). Under these specifications, demand xθ(·) has the form in (1.2.29). Therefore, a design z0 ∈ R2
++

is on the boundary of the third regime if, and only if, y0 = πγ1
1+πγ2

(see Figure 1.4). Therefore, at every

z0 ∈ R2
++ on this boundary:

∂xθ,1(z0)

∂y−0
=

1− πγ2

2πp0
,
∂eθ,1(z0)

∂y+
0

= −γ2

p0
,
∂eθ,2(z0)

∂y−0
=

1− πγ2

2
. (1.3.3)
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As expected, we obtain the following equality:

(
1

p0

)
1− ∂xθ,2(z0)/∂y−0

∂xθ,1(z0)/∂y−0 − ∂xθ,1(z0)/∂y+
0

=
1− (1− πγ2)/2

(1− πγ2)/2π + γ2
= π. (1.3.4)

4

Identification of the Benefit Policy

The identification of the discount factor π lays the foundation for the identification of the policy b(·).

The role of the discount factor π is evident in the following theorem:

Theorem 1.3. Under Assumptions 1.1 to 1.7, N, and B.1:

(i) z ∈ R∗θ,1 ∪R∗θ,2 implies b(z) = eθ(z)− y,

(ii) z ∈ R∗θ,3 implies b(z) = 1
π

[
πeθ,1(z) + eθ,2(z)− y

]
,

for each z ∈ Z. Therefore, the policy b(·) is identified over the set Z.

Proof. Part (i) follows from Proposition 1.5, and part (ii) follows from budget exhaustion and the fact

that z ∈ R∗θ,3 implies g(xθ,1(z); z, b, π) = y +
[
b(z)− pxθ,1(z)

]
π.

Theorem 1.3 says that we can identify the policy b(·) over the observable set Z. In other words,

we can deduce benefits b(z) from household income y, the price p, and demand xθ(z), even when fraud

exists. Though the general form of the policy is known (see Appendix 1.A), our dataset might not have

information on certain household characteristics that implicitly affect the policy b(·), making it difficult

to use our knowledge of this form to explicitly calculate benefits b(z). Here, Theorem 1.3 tells us that we

can simply use budget exhaustion to deduce benefits b(z). Since the equality in Theorem 1.3(ii) depends

on the discount factor π, without Assumptions B.1(ii) and B.1(iii), we would not be able to identify the

policy b(·) in the third regime.

Identification of Standard Demand and Demand for Fraud

The first three steps are needed for the fourth step: the identification of standard demand xu(·) and

demand for fraud fθ(·). Recall, ψ(z) denotes total income y+b(z), and φ(z) denotes the amount y+πb(z).

The next result follows from the closed-forms for the demands, xθ(·) and fθ(·), in (1.2.28) and (1.2.26).

Theorem 1.4. Under Assumptions 1.1 to 1.7, N, and B.1:

(i) Standard demand xu(·) is identified over:

{
(ψ(z), p)′ : z ∈ R∗θ,1

}
∪
{

(φ(z), πp)′ : z ∈ R∗θ,3
}
. (1.3.5)

(ii) Demand for fraud fθ(z) = [b(z)− pxθ,1(z)]+ is identified over the set Z.
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Proof. See Corollary 1.1, Proposition 1.4, and Theorems 1.2 and 1.3.

Theorem 1.4(i) says that we can identify part of standard demand xu(·). Knowledge of standard

demand xu(·) is needed to evaluate the effect of a change in the policy b(·) on demand xθ(·) and demand

for fraud fθ(·). It can also be used to recover utility u(·) (see Section 1.3.4). Theorem 1.4(i) follows from

the fact that (i) in the first regime, demand xθ(z) equals xu(ψ(z), p), and (ii) in the third regime, demand

xθ(z) equals xu(φ(z), πp). Theorem 1.4(ii) says that we can identify the chosen amount of fraud fθ(z),

at every z ∈ Z. If Assumption B.1(ii) or B.1(iii) is violated and we cannot identify the discount factor

π, then we can only identify standard demand xu(·) using the first regime, and we can only identify

bounds for fraud fθ(z).

1.3.3 Identification when Income is Not Observed

Up until now, I have assumed that we observe income y. I will now relax this assumption. As described

in Section 1.2.12, when income y is not observed, it is common to think of demand, and other latent

functions, as functions of total expenditure e, rather than income y. In this section, I consider the

identification of the regimes, policy b(·), discount factor π, standard demand xu(·), and demand for

fraud fθ(·), when income y is not observed. Moreover, I will discuss the identification of some reduced-

form objects: the pseudo-income function y∗θ(·), pseudo-policy function b∗θ(·), and pseudo-fraud function

f∗θ (·). While these reduced-form objects do not provide additional information to the FNS, they let

the econometrician immediately deduce the household’s income y, benefits b(z), and chosen amount of

fraud fθ(z), when income y is not observed. Appendix 1.D contains more on the identification of these

reduced-form objects. Howevers, few objects are identified without additional model structure. In what

follows, I focus on the identification of bounds, instead of imposing, say, strong parametric assumptions.

Observability Assumption

Recall, Wθ,j denotes the set of admissible w ∈ R2
++ at which pseudo-demand x∗θ(·) is in the jth regime,

as defined by the form in Corollary 1.2. Now, consider a new assumption:

Assumption B.2.

(i) We observe w = (e, p) and x∗θ(w), at every w ∈ W.

(ii) The set W is open and path-connected.

(iii) The observable component W ∗θ,j ≡ W ∩Wθ,j is non-empty, for j = 1, 2, 3.

(iv) For each w0 ∈ W, there exists w1 ∈W ∗θ,2 with p1 = p0.

Assumption B.2 does not assume that we observe income y, as in Assumption B.1, but it imposes

some additional restrictions onW: Assumption B.2(iii) says that every regime is non-empty; Assumption
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Figure 1.8. Observable Set. These figures illustrate the regimes associated with x∗θ(·) in (1.2.40) given
the policy b(·) with fixed prices in (1.2.6). In each figure, the union of all coloured sets is W, the blue
region is W ∗θ,1, the red region is W ∗θ,2, and the green region is W ∗θ,3. On the left, Assumption B.2 is
satisfied. On the right, Assumption B.2(iv) is, in fact, violated because some pairs in W ∗θ,3 are not
directly below some pair in W ∗θ,2.

B.2(iv) says that, for every observable price p, there is an observable amount e where (e, p) is in the second

regime. Assumptions B.2(ii) to B.2(iv) are for simplicity; I will make it clear when they are needed.

When income y is observed, we can identify the regimes, use the boundary of the third regime to

identify the discount factor π, use the discount factor π to identify the policy b(·), and use the policy

b(·) to identify standard demand xu(·) and demand for fraud fθ(·). Unfortunately, these steps are not

feasible when income y is not observed—we can no longer identify the discount factor π using only our

knowledge of the regimes.

The modified steps are as follows: (i) identify the regimes, (ii) identify bounds for the policy b(·),

(iii) identify standard demand xu(·), (iv) identify a bound for the discount factor π, and (v) identify

bounds for the demand for fraud fθ(·). The first step lays the foundation for the steps that follow; the

fourth step lays the foundation for the fifth.

Identification of the Regimes

In Section 1.3.2, we identified the regimes by comparing non-food expenditure eθ,2(z) with income y.

Since income y is no longer observed, we need a new way to identify the regimes. Consider a new result:

Theorem 1.5. Let w0 = (e0, p0) ∈ W denote an observable pair, and let w1 = (e1, p1) ∈ W ∗θ,2 denote

another observable pair that satisfies p1 = p0. Under Assumptions 1.1 to 1.7, N, and B.2, these pairs

exist, and the following implications hold:

(i) If pseudo-demand for food x∗θ,1(·) is non-increasing in e at w0 ∈ W, then w0 ∈W ∗θ,2.

(ii) If w0 6∈W ∗θ,2, then:

• e1 > e0 implies w0 ∈W ∗θ,1;

• e1 < e0 implies w0 ∈W ∗θ,3.
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Figure 1.9. Procedure in Theorem 1.5. This figure illustrates the regimes associated with x∗θ(·) in
(1.2.40) given the policy b(·) with fixed prices in (1.2.6). The union of all coloured sets is W. The blue
region is W ∗θ,1, the red region is W ∗θ,2, and the green region is W ∗θ,3. After identifying W ∗θ,2, we can
classify the blue and green regions by looking for points that are above or below the red region, as shown
by the blue and green nodes.

Therefore, the sets W ∗θ,j are identified and the regimes are observable.

Proof. See Corollary 1.3.

Theorem 1.5 implies that we can identify the regimes using expenditure effects. Intuitively, after

identifying the second regime, we only have to determine which of the remaining sets is above the second

regime, and which is below (see Figure 1.9). This result uses, but does not rely on, Assumption B.2(iv).

Identification of the Benefit Policy

Next, I show how to identify the policy b(·) in the second regime, and then use what we have learned

from the second regime to identify bounds in the first and third regimes.

Lemma 1.3. Under Assumptions 1.1 to 1.7, N, and B.2:

y∗θ(w) = x∗θ,2(w) and b∗θ(w) = px∗θ,1(w), (1.3.6)

at each w ∈W ∗θ,2. Therefore, y∗θ(·) and b∗θ(·) are identified over W ∗θ,2.

Proof. This result follows from the definition of the second regime in Corollary 1.2.

Lemma 1.3 implies that, when demand is in the second regime, we can use what we observe to recover

the household’s income y∗θ(w) and benefits b∗θ(w). Lemma 1.3 follows from the fact that, in the second

regime, the household consumes on the kink of its budget set. Next, consider the following implication:

Theorem 1.6. Under Assumptions 1.1 to 1.7, N, and B.2, the policy b(·) is identified over:

{
(y∗θ(w), p)′ : w ∈W ∗θ,2

}
. (1.3.7)
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Proof. By the definition of the pseudo-policy function b∗θ(·), we have: b∗θ(w) = b(y∗θ(w), p). Moreover, by

Proposition 1.8 and Lemma 1.3, we can invert the pseudo-income function y∗θ(·) to obtain the expenditure

function eθ(·), at every z in the set in (1.3.7). Identification is, then, implied by the following relationship:

b(z) = b(y∗θ(eθ(z), p), p) = b∗θ(eθ(z), p). (1.3.8)

Now, define:

e`(p) ≡ inf
{
e > 0 : (e, p) ∈W ∗θ,2

}
and eh(p) ≡ sup

{
e > 0 : (e, p) ∈W ∗θ,2

}
. (1.3.9)

Here, e`(p) is the lowest total expenditure e in the second regime given p, and eh(p) is the highest total

expenditure e in the second regime given p. By Assumptions B.2(ii) and B.2(iv), and Theorem 1.5,

these amounts are identified, for any observable p. By Lemma 1.3, we can also identify: y∗θ(e`(p), p),

b∗θ(e`(p), p), y
∗
θ(eh(p), p), and b∗θ(eh(p), p).

Theorem 1.7. Under Assumptions 1.1 to 1.7, N, and B.2:

(i) z ∈ Rθ,1 implies max{0, eh(p)− y} ≤ b(z) ≤ b∗θ(eh(p), p).

(ii) z ∈ Rθ,3 implies b∗θ(e`(p), p) ≤ b(z) < e`(p)− y.

Proof. See Appendix 1.B.11.

From Theorem 1.7, we can identify bounds for the policy b(·) in both the first and third regimes,

as long as the price p is observable (see Figure 1.10). Theorem 1.7 follows from Theorem 1.6 and the

fact that the derivative of the policy b(·) is strictly larger than −1, and no larger than 0. Note, the first

inequality in Theorem 1.7(i) is strict if eh(p) > y.

Example 1.8 (Continued). Suppose that the household has a Stone-Geary utility function, defined by:

u(x) =
√
x1x2, for every x ∈ R̄. Further suppose that the policy b(·) has the form with fixed prices in

(1.2.6). Under these specifications, the pseudo-policy function b∗θ(·) has the form in (1.2.39), and the

pseudo-demand function x∗θ(·) has the form in (1.2.40). Thus, the definition of the second regime yields:

e`(p) =
(1 + π)γ1

1 + πγ2
and eh(p) =

2γ1

1 + γ2
, (1.3.10)

for every p > 0. Consequently, we obtain:

b∗θ(e`(p), p) =
γ1

1 + πγ2
and b∗θ(eh(p), p) =

γ1

1 + γ2
. (1.3.11)
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Figure 1.10. Bounds for the Benefit Policy. Bounds for the policy in (1.2.6) from Example 1.1.
The blue line denotes the policy. The bounds for the policy in the first regime are in red. Likewise, the
bounds for the policy in the third regime are in green.

Theorem 1.7 implies:

max

{
0,

2γ1

1 + γ2
− y
}
≤ b(z) ≤ γ1

1 + γ2
, (1.3.12)

for every z ∈ Rθ,1. The lower bound is smaller than the upper bound in (1.3.12) because γ1 > 0 and

z ∈ Rθ,1 if, and only if, y > γ1
1+γ2

. In a similar fashion, Theorem 1.7 implies:

γ1

1 + πγ2
≤ b(z) ≤ (1 + π)γ1

1 + πγ2
− y, (1.3.13)

for every z ∈ Rθ,3. The lower bound is smaller than the upper bound in (1.3.13) because z ∈ Rθ,3 if,

and only if, y < πγ1
1+πγ2

. I illustrate these bounds in Figure 1.10. In this figure, we can clearly see that

the policy b(·) always lies between these bounds, and that, loosely speaking, these bounds become wider

as y moves further from the boundary of the second regime. 4

Identification of Standard Demand

We can also use what we know about the form of pseudo-demand x∗θ(·) to identify standard demand

xu(·) in the first regime. In particular, we obtain the following identification result:

Theorem 1.8. Under Assumptions 1.1 to 1.7, N, and B.2:

x∗θ(w) = xu(w), (1.3.14)

at each w ∈W ∗θ,1. Therefore, standard demand xu(·) is identified over W ∗θ,1.

Proof. By Corollary 1.2: x∗θ(w) = xu(ψ∗θ(w), p), for every w ∈ W ∗θ,1. It is, therefore, left to show

e = ψ∗θ(w), for every w ∈W ∗θ,1. This result holds since:

e = px∗θ,1(w) + x∗θ,1(w) = pxu,1(ψ∗θ(w), p) + xu,2(ψ∗θ(w), p) = ψ∗θ(w), (1.3.15)
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for every w ∈W ∗θ,1.

It turns out, we can identify standard demand xu(·) if, and only if, pseudo-demand x∗θ(·) is in the

first regime, so that, when income y is not observed, we lose our ability to identify standard demand in

the third regime. Hence, we can only deduce the exact change in demand from, say, a change in policy, if

we are analyzing choices in the first regime. I omit the bounds for standard demand xu(·) in the second

and third regimes, for brevity.

Identification of the Discount Factor

We are now in a position to address the identification of the discount factor π. The following prerequisite

result uses budget exhaustion and the definitions of y∗θ(·) and b∗θ(·):

Lemma 1.4. Under Assumptions 1.1 to 1.7, N, and B.2:

∂x∗θ,2(w)

∂e
<
∂y∗θ(w)

∂e
<

1

1− π
and − 1

1− π
<
∂b∗θ(w)

∂e
≤ 0, (1.3.16)

at each w ∈W ∗θ,3.

Proof. See Appendix 1.B.12.

Lemma 1.4 implies that, in the third regime, (i) the pseudo-income function y∗θ(·) increases in e faster

than pseudo-demand for non-food x∗θ,2(·), but slower than 1
1−π , and (ii) the pseudo-policy function b∗θ(·)

decreases in e at a rate no faster than − 1
1−π . As in Theorem 1.7, we can integrate these bounds in order

to construct bounds for the pseudo-income function y∗θ(·) and the pseudo-policy function b∗θ(·):

Lemma 1.5. Under Assumptions 1.1 to 1.7, N, and B.2:

max

{
0, y∗θ(e`(p), p)−

|e`(p)− e|
1− π

}
< y∗θ(w) < x∗θ,2(w)

and b∗θ(e`(p), p) ≤ b∗θ(w) < b∗θ(e`(p), p) +
|e`(p)− e|

1− π
,

(1.3.17)

at each w ∈W ∗θ,3.

Proof. See Lemma 1.4.

These bounds are not identified because they depend on the (unobserved) discount factor π. That

being said, these bounds imply that, in the third regime, pseudo-income y∗θ(w) is strictly larger than 0,

and benefits b∗θ(w) are no smaller than b∗θ(e`(p), p), which is identified. We can use this implication to

bound the discount factor π above:

Theorem 1.9. Under Assumptions 1.1 to 1.7, N, and B.2:

π < min

{
1, inf
w∈W∗θ,3

x∗θ,2(w)

b∗θ(e`(p), p)− px∗θ,1(w)

}
≡ π∗h. (1.3.18)
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Proof. See Appendix 1.B.13.

Remark 1.5. Lemma 1.5 is the first noteworthy use of the fact that standard demand for non-food

xu,2(·) is strictly increasing in income y on R2
++. This assumption implies that pseudo-demand for

non-food x∗θ,2(·) is strictly increasing in total expenditure e, a sufficient condition for the upper bound

for the pseudo-income function y∗θ(·) in (1.3.17) to be the tightest upper bound that we can construct

using Lemma 1.4 in the third regime. Without this assumption, Lemma 1.4 implies that y∗θ(w) is only

bounded above by:

y∗θ(e`(p), p)−
∫ e`(p)

e

max

{
0,
∂x∗θ,2(w)

∂e

}
de. (1.3.19)

This bound is strictly smaller than the upper bound for y∗θ(w) in (1.3.17) if, and only if, pseudo-demand

for non-food x∗θ,2(·) is strictly increasing in total expenditure e on the interval [e, e`(p)].

Remark 1.6. The upper bound π∗h for the discount factor π in (1.3.18) follows from the identifiable

bounds for y∗θ(·) and b∗θ(·), as described in the discussion immediately following Lemma 1.5, and the fact

that, by budget exhaustion:

π =
x∗θ,2(w)− y∗θ(w)

b∗θ(w)− px∗θ,1(w)
, (1.3.20)

for every w ∈ W ∗θ,3. Now, notice that, if the upper bound π∗h for the discount factor π in (1.3.18) is

strictly smaller than 1, then we can use Lemma 1.5 to construct a lower bound for pseudo-income y∗θ(w)

that is, at least for some pairs w ∈Wθ,3, strictly larger than 0 (i.e. the previous identifiable lower bound

for pseudo-income y∗θ(w)) such that:

y∗` (w) ≡ max

{
0, y∗θ(e`(p), p)−

|e`(p)− e|
1− π∗h

}
< y∗θ(w). (1.3.21)

This new lower bound on pseudo-income y∗θ(w) can, then, be used to construct a new upper bound for

the discount factor π that is weakly smaller than the upper bound π∗h:

π < inf
w∈W∗θ,3

x∗θ,2(w)− y∗` (w)

b∗θ(e`(p), p)− px∗θ,1(w)
. (1.3.22)

If this upper bound is strictly smaller than π∗h, then we can repeat this procedure to construct a tighter

lower bound for pseudo-income y∗θ(w), and a tighter upper bound for the discount factor π. We can

repeat this procedure until these bounds converge. I restrict attention to π∗h, stopping at one interation

of this procedure, for simplicity.

Example 1.8 (Continued). Suppose that the household has a Stone-Geary utility function, defined

by: u(x) =
√
x1x2, for every x ∈ R̄. Further suppose that the policy b(·) has the form with fixed

prices in (1.2.6). Under these specifications, the amount b∗θ(e`(p), p) has the form in (1.3.11), and the

pseudo-demand function x∗θ(·) has the form in (1.2.40). If we observe the entire third regime such that
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W ∗θ,3 = Wθ,3, then we obtain:

π∗h = min

{
1, inf
w∈Wθ,3

πe(1 + πγ2)

γ1(1 + π)− e(1 + πγ2)

}
. (1.3.23)

I obtain this expression by inputing b∗θ(·) and x∗θ(·) into (1.3.18), and then simplifying the resulting

expression. Since the fraction in this expression is strictly increasing in e, it attains its infimum at the

lowest admissible value of total expenditure (1+π)γ1
2 . Thus:

π∗h = min

{
1,
π(1 + πγ2)

1− πγ2

}
. (1.3.24)

This bound is strictly smaller than 1 if, and only if:

γ2 <
1− π

π(1 + π)
. (1.3.25)

In words, we can identify an “informative” upper bound π∗h for the discount factor π if, and only if, the

rate γ2 at which the policy b(·) decreases with respect to income y is small, relative to a function of the

discount factor π. Since the fraction on the right-hand side of this inequality is decreasing in π on (0, 1),

this inequality is more likely to hold for smaller values of π. Intuitively, the smaller the discount factor

π, the larger its effect on pseudo-demand x∗θ(·), improving our ability to make inference about π. 4

Identification of Demand for Fraud

The upper bound π∗h on the discount factor is needed to identify informative bounds for the demand for

fraud fθ(·). For ease of exposition, I impose the following assumption:

Assumption 1.8. The upper bound π∗h in (1.3.18) is strictly smaller than 1.

Assumption 1.8 implies that we can identify an informative upper bound for the discount factor π, as

described in the previous section. As seen in Example 1.8, whether Assumption 1.8 holds depends on (i)

the form of the benefit policy, (ii) the household’s preferences, and (iii) what we observe. Fortunately,

we can simply check Assumption 1.8 when π∗h is identified, as under Assumptions 1.1 to 1.7, N, and B.2.

Corollary 1.4. Under Assumptions 1.1 to 1.8, N, and B.2:

max

{
0, y∗θ(e`(p), p)−

|e`(p)− e|
1− π∗h

}
< y∗θ(w) < x∗θ,2(w)

and b∗θ(e`(p), p) ≤ b∗θ(w) < b∗θ(e`(p), p) +
|e`(p)− e|

1− π∗h
,

(1.3.26)

at each w ∈W ∗θ,3.

Proof. See Lemma 1.5 and Theorem 1.9.
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Corollary 1.4 follows from the fact that, if we replace the discount factor π in the bounds in (1.3.17)

with the upper bound π∗h in (1.3.18), then these bounds become wider. Since the upper bound π∗h is

identified, the bounds in Corollary 1.4 are also identified. We can, therefore, use these bounds to identify

bounds for the pseudo-fraud function f∗θ (·):

Lemma 1.6. Under Assumptions 1.1 to 1.8, N, and B.2:

b∗θ(e`(p), p)− px∗θ,1(w) ≤ f∗θ (w) ≤ b∗θ(e`(p), p) +
|e`(p)− e|

1− π∗h
− px∗θ,1(w). (1.3.27)

for every w ∈W ∗θ,3.

Proof. See Corollaries 1.1 and 1.4.

Lemma 1.6 implies that we can bound the household’s chosen amount of fraud f∗θ (w) both above

and below, at every w ∈ W. Under Assumptions 1.1 to 1.8, and N, these bounds are informative in the

sense that, in the interior of the third regime, the lower bound is larger than 0, and the upper bound is

finite.

While Lemma 1.6 is useful for the econometrician, it cannot directly be used to map designs z ∈ R2
++

to fraud fθ(z), making it less useful for the FNS. That being said, Lemma 1.6 provides the foundation

for the identification of bounds for the demand for fraud fθ(·). First, we need to identify bounds for

total expenditure eθ(·) as a function of z = (y, p).

Lemma 1.7. Under Assumptions 1.1 to 1.8, N, and B.2:

λ`(z) ≡ {e : x∗θ,2(w) = y} < eθ(z) < (1− π∗h)
[
y − y∗θ(e`(p), p)

]
+ e`(p) ≡ λh(z), (1.3.28)

for every z ∈ Rθ,3.

Proof. This result follows from rearranging the bounds for y∗θ(z) in Corollary 1.4.

Lemma 1.7 says that, in the third regime, total expenditure eθ(z) is both (i) bounded below by the

inverse λ`(z) of pseudo-demand for non-food x∗θ,2(·), given p, evaluated at y, and (ii) bounded above by

a linear transformation λh(z) of the distance between y and y∗θ(e`(p), p) that depends on the bound π∗h.

Theorem 1.10. Under Assumptions 1.1 to 1.8, N, and B.2:

b∗θ(e`(p), p)− px∗θ,1(λh(z), p) ≤ fθ(z)

≤ b∗θ(e`(p), p) +
|e`(p)− λ`(z)|

1− π∗h
− px∗θ,1(λ`(z), p),

(1.3.29)

for every z ∈ Rθ,3.

Proof. See Lemma 1.6 and 1.7.
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Theorem 1.10 implies that we can bound the household’s demand for fraud fθ(z) both above and

below, at every z ∈ Rθ,3 at which (λ`(z), p)
′, (λh(z), p)′ ∈ W. Without Assumption 1.8, these bounds

become uninformative—in particular, the lower bound becomes 0, and the upper bound becomes infinite.

Remark 1.7. In practice, we also observe the maximum possible amount of benefits (see Table 1.11 in

Appendix 1.A). We could, theoretically, apply this information to construct upper bounds on, say, the

pseudo-fraud function f∗θ (·) if Assumption 1.8 is violated. For instance, if bh(p) denotes this maximum,

then, for every w ∈W ∗θ,3, we must have:

f∗θ (w) ≤ bh(p)− px∗θ,1(w). (1.3.30)

Example 1.8 (Continued). Suppose that the household has a Stone-Geary utility function, defined by:

u(x) =
√
x1x2, for every x ∈ R̄. Further suppose that the policy b(·) has the form with fixed prices in

(1.2.6). Under these specifications, the pseudo-income function y∗θ(·) has the form in (1.2.35) and the

pseudo-policy function b∗θ(·) has the form in (1.2.39). Furthermore, the pseudo-demand function x∗θ(·)

has the form in (1.2.40), and we obtain the amounts in (1.3.10) and (1.3.11), and the bound in (1.3.24).

Moreover, we obtain:

y∗θ(e`(p), p) =
πγ1

1 + πγ2
and y∗θ(eh(p), p) =

γ1

1 + γ2
, (1.3.31)

and the expenditure function eθ(·) is bounded by:

λ`(z) =
(1 + π)y

π
and λh(z) =

(1 + π)γ1 − (1− π∗h)[πγ1 − y(1 + πγ2)]

1 + πγ2
. (1.3.32)

in the third regime. Therefore:

(1− π∗h)[πγ1 − (1 + πγ2)y]

(1 + π)(1 + πγ2)
≤ fθ(z) ≤

(2− π − π∗h)[πγ1 − (1 + πγ2)y]

π(1− π∗h)(1 + πγ2)
, (1.3.33)

for every z ∈ Rθ,3. It is easy to show that (i) these bounds are strictly positive in the interior of the third

regime, and (ii) these bounds contain the demand for fraud fθ(z) in (1.2.30) whenever the condition

ensuring that π∗h is smaller than 1 in (1.3.25) holds. 4

1.3.4 Identification of Utility

In Sections 1.3.2 and 1.3.3, I explicitly focused on the non-parametric identification of specific latent func-

tional parameters in the model of benefit fraud in Section 1.2, and some functions of these parameters.

Here, I focus on the partial non-parametric identification of a determinant of demand: utility.

The objective of this section is somewhat analogous to the objective of identification in a deep learning

model. Loosely speaking, deep learning models use observable data to identify components in a first layer

of the model, and then use these objects to identify objects in a second layer, and continue this procedure
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until all layers have been identified. In this section, I use the fact that standard demand xu(·) is identified

to identify utility u(·).

The identification of utility u(·) involves solving an ordinary differential equation. The procedure in

this section is closely related to the integrability theorem (see, for example, pages 243-245 in Samuelson,

1948, Theorem 2 in Hurwicz and Uzawa, 1971, Theorem 2 in Hosoya, 2013, and Section 2.4 in Hosoya,

2016), as well as recoverability (Mas-Colell, 1977).

An Ordinary Differential Equation

Recall, under Assumption 1.6, the subset G(v) is a twice-continuousously-differentiable indifference

curve, as long as it is non-empty. For exposition, let g(·, v) denote the indifference curve G(v), written

as a function of the quantity of food x1 such that:

u(x1, g(x1, v)) = v, (1.3.34)

for every x1 > 0 and v 6= u(0, 0). By differentiating both sides of this equality with respect to the quant-

ity of food x1, we obtain:
∂g(x1, v)

∂x1
= −m(x1, g(x1, v)), (1.3.35)

where m(x) ≡ ∂u(x)/∂x1

∂u(x)/∂x2
denotes the household’s marginal rate of substitution evaluated at bundle x ∈ R:

the rate at which the household is willing to exchange food for non-food given x. If we fix g(x′1, v) = x′2,

for some x′ ∈ R, then (1.3.35) becomes an initial value problem. If this initial value problem has a

unique global solution, then the solution coincides with the indifference curve that passes through x′.

It is left to show that (i) we can identify the marginal rate of substitution m(·), and (ii) after we fix

g(x′1, v) = x′2, the ordinary differential equation in (1.3.35) has a unique global solution.

The Marginal Rate of Substitution

Consider the standard utility maximization problem under a linear budget constraint in (1.2.27). Under

Assumption 1.6, standard demand xu(z) solves the following system of equations:

m(x) = p and px1 + x2 = y. (1.3.36)

The first equality implies that the slope of the indifference curve that passes through standard demand

xu(z) equals the slope of the boundary of the household’s budget set, also known as the budget line; the

second equality is Walras’ law (Walras, 1874). The first equality implies that, if we can invert standard
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demand xu(·), then the second component of this inverse:

zu(x) =

 yu(x)

pu(x)

 , (1.3.37)

which characterizes the price p as a function of x, coincides with the marginal rate of substitution such

that m(x) = pu(x). Since the invertibility of standard demand xu(·) follows from strong quasi-concavity

(see Proposition 2 in Chapter 2), if standard demand xu(·) is identified over a subset Z0, then the

marginal rate of substitution m(·) is identified over the range of standard demand xu(·) on this subset.

Existence of a Unique Global Solution

Under Assumption 1.6, the marginal rate of substitution m(·) is continuously-differentiable on R. As a

result, the Picard-Lindelöf theorem implies that the ordinary differential equation in (1.3.35) has a unique

local solution, for every initial condition. It is, therefore, left to find conditions on the range of standard

demand xu(·) over its identified set Z0 under which this solution can be analytically extended to the

boundary of this range in a unique way. It is sufficient for this range to be open and for the intersection

of this range with the indifference curve G(v) to be a connected set (see Section 2.3 in Chapter 2 for more

discussion, and Section 1.3.4 for a discussion of what happens when this intersection is not connected.

Remark 1.8. Here, the existence of a unique global solution is simplified by the fact that there are only

two distinct goods. When there are three or more distinct goods, we require an “integrability condition”

(see Theorem 10.9.4 in Dieudonné, 1960, for a theoretical result, and Section 2 in Samuelson, 1950, for

a discussion of this feature).

Main Result

Sections 1.3.4 to 1.3.4 describe a procedure that can be used to identify utility u(·) from standard demand

xu(·). I now formally summarize this result. Consider an assumption:

Assumption B.3.

(i) Standard demand xu(·) is identified over Z0.

(ii) The closure X0 of the range xu(Z0) admits an open subset that is dense in X0.

(iii) The following set is connected:

X1,v =
{
x1 ≥ 0 : (x1, x2) ∈ X0 ∩G(v), for some x2 ≥ 0

}
. (1.3.38)

Assumption B.3(ii) implies that the closure of the interior of xu(Z0) equals the closure of xu(Z0).

Assumption B.3(ii) is slightly more general than assuming that xu(Z0) is open. I do not assume that
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X1,v

x1

x2

X0

G(v)

Figure 1.11. Sets in Assumption B.3. The shaded region is X0. The blue curve is the intersection of
X0 and G(v). The red line is X1,v.

X0

x1

x2

X0

x1

x2

Figure 1.12. Connected Sets. In each figure, the shaded region is X0 and the blue curves denote
the intersection of X0 with an indifference curve. These intersections are connected whenever X0 is a
rectangle, or a cone, because indifference curves are downward sloping and strictly convex.

xu(Z0) is open because, in general, it will not be open, even if Z0 is open. However, under Assumption

B.3(ii), if we can identify utility u(·) over the interior of xu(Z0), then we can extend this identification

to X0 using the continuity of utility u(·), as described in Remark 1.4. Assumption B.3(iii) says that

the “observable” part of the indifference curve G(v) is connected—the set X1,v is the projection of the

intersection of X0 and G(v) onto the x1-axis. Assumption B.3(iii) ensures that g(·, v) never leaves and

re-enters X0. Many conditions can guarantee that this property holds. For example, it is sufficient for

Z0 to be a rectangle, or a cone, in R2
++ (see Figure 1.12).

Theorem 1.11. Under Assumptions 1.1, 1.6, and B.3:

(i) The marginal rate of substitution m(·) is identified over X0.

(ii) The indifference curve g(·, v) is identified over X1,v.

Proof. See Theorem 1 in Chapter 2.

Theorem 1.11(i) does not use the restrictions in Assumption B.3(ii). Theorem 1.11(ii) says that G(v)

is identified where it intersects X0. Theorem 1.11 says that utility u(·) is identified up to a strictly
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increasing transformation over X0. While Theorem 1.11(ii) is related to the integrability theorem, I

assume that standard demand xu(·) is generated by a well-behaved utility function, rather than proving

that such a function exists. Theorem 1.11 should also be distinguished from finite sample methods (see

Afriat, 1967, and Varian, 1982). To summarize, the steps:

(i) Invert standard demand xu(·) to recover m(x) = pu(x) over X0.

(ii) Fix x′ ∈ X0 and solve:

∂g(x1, v)

∂x1
= −m(x1, g(x1, v)) subject to g(x′1, v) = x′2, (1.3.39)

for every x1 ∈ X1,v. The solution extends to the boundary of the observable set X1,v and it

coincides with the indifference curve g(·, v) that passes through x′ ∈ X0.

Example 1.8 (Continued). Suppose that the household has a Stone-Geary utility function, defined by:

u(x) =
√
x1x2, for every x ∈ R̄. Under this specification, the marginal rate of substitution has the form:

m(x) = x2/x1, for each x ∈ R. Moreover, standard demand has the form: xu(z) =
(
y
2p ,

y
p

)′
, for each

z ∈ R2
++. Inverting yields:

z(x) =

(
2x2,

x2

x1

)′
, (1.3.40)

As expected, the second component of this inverse coincides with the marginal rate of substitution m(·).

Now, notice that, if standard demand xu(·) is identified over the entire orthant R, then X1,v coincides

with the set of positive real-numbers R++. For this utility function, the ordinary differential equation

in (1.3.35) becomes a linear differential equation such that:

∂g(x1, v)

∂x1
= −g(x1, v)

x1
. (1.3.41)

The solution to this differential equation has the form: δv/x1, in which δv denotes a function of the

integrating constant. The form of this solution is found by dividing (1.3.41) by g(x1, v), integrating, and

appling the exponential transform. Consequently, if we solve (1.3.41) subject to g(x′1, v) = x′2, for some

x′ ∈ R, then δv = x′1x
′
2. To see that this solution equals the indifference curve that passes through x′,

notice that, under this specification (i) g(x1, v) = v2/x1, and (ii) v = u(x′) implies v2 = x′1x
′
2. 4

Discussion

Theorem 1.11 implies that utility u(·) is identified up to a strictly increasing transformation over X0, but

it says nothing about what happens (i) outside the range X0, or (ii) when X1,v is not connected. In each

case, we can find a partial order. For example, in Figure 1.13, we can use the fact that the indifference

curves of u(·) are downward sloping and strictly convex to infer that the unobserved continuation of

G(v0) lies in the red and orange regions. Similarly, we can use the monotonicity and transitivity of
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X0

x1

x2

G(v1)

G(v0)

Figure 1.13. Identification Outside X0. The gray regions are X0. The blue curves denote intersections
of X0 with indifference curves. The continuation of G(v0) outside X0 lies in the red and orange regions
because the indifference curves of u(·) are downward sloping and strictly convex. By monotonicity and
transitivity, every bundle on G(v0) is strictly better than every bundle in the green region. We can then
use this information to infer that the continuation of G(v0) outside X0 lies in the red region.

X0

x1

x2

G(v0)

Figure 1.14. Recovering a Total Order on Disjoint Sets. The union of red and green regions is
X0. The blue curve denotes the intersection of X0 with an indifference curve. This indifference curve
chracterizes the set of least preferred bundles in the red region. We can recover a total order because
the least preferred bundles in the red region are preferred to all bundles in the green region.

utility u(·) to infer that every bundle on G(v0) is strictly better than every bundle in the green region,

including those along G(v1). We can, then, use this information to tighten the lower bound on G(v0)

outside X0. This procedure implies that the unobserved continuation of G(v0) lies in the red region.

Since this argument holds for every indifference curve that intersects the green region, we can choose

an indifference curve that yields a tight lower bound. We can also use a similar argument for the upper

bound, and continue this procedure until we obtain sharp bounds. This argument also implies that there

are some exceptions in which we can recover a total order over disjoint sets—for example, in Figure 1.14,

the least preferred bundle in the red region is preferred to every bundle in the green region, implying that

we can recover a total order. While I do not discuss these aspects further, they are related to revealed

preference, and what arises with finitely many observations of standard demand xu(·) (see Afriat, 1967,

or Varian, 1982).
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Link with Other Identification Results

Let us now consider the link between the identification result in this section and the results from Sections

1.3.2 and 1.3.3—that is, let us discuss the appropriateness of the assumptions on the observable set X0.

If income y is observed, we can identify standard demand xu(·) over:

Z∗0 ≡
{

(ψ(z), p)′ : z ∈ R∗θ,1
}
∪
{

(φ(z), πp)′ : z ∈ R∗θ,3
}
. (1.3.42)

Theorem 1.11 implies that we can identify utility u(·) over the closure X ∗0 of the range xu(Z∗0 ) if (i)

xu(Z∗0 ) admits an open subset that is dense in X ∗0 , and (ii) the following set is connected:

X ∗1,v ≡
{
x1 ≥ 0 : (x1, x2) ∈ X ∗0 ∩G(v), for some x2 ≥ 0

}
, (1.3.43)

for every observable (indirect) utility level v 6= u(0, 0). While the first condition holds under weak

assumptions (see Remark 1.4), the second condition does not usually hold—in general, the projection

X ∗1,v is disconnected. However, even if X ∗1,v is disconnected, we can identify utility u(·) over a proper

subset of X ∗0 on which these conditions hold (and deduce a partial order over X ∗0 , if desired, as in Section

1.3.4).

The second condition—that is, the connectedness of the projection of the identified range of standard

demand—is less worrisome when income y is not observed because we can only identify standard demand

in the first regime. Indeed, the second condition is usually violated when income y is observed because

Z∗0 is the union of two disjoint sets. When income y is not observed, we only need to ensure that the

set associated with the first regime W ∗θ,1 is well-behaved (recall the conversation after Assumption B.3).

Example 1.8 (Continued). Suppose that the household has a Stone-Geary utility function, defined by:

u(x) =
√
x1x2, for every x ∈ R̄. Under this specification, standard demand has the form: xu(z) =(

y
2p ,

y
2

)′
, for each z ∈ R2

++. Further suppose that the policy b(·) has the form with fixed prices in (1.2.6)

subject to γ2 < 1. These assumptions imply that the pseudo-demand function x∗θ(·) has the form in

(1.2.40). Theorem 1.4 implies that, if we observe demand xθ(·) on R, then standard demand xu(·) is

identified over:

Z∗0 =

{
z ∈ R2

++ : y ∈
[
πγ1,

2πγ1

1 + πγ2

]
∪
[

2γ1

1 + γ2
,∞
)}

. (1.3.44)

Therefore, X ∗0 is the Cartesian product of [0,∞) and:

[
πγ1

2
,

πγ1

1 + πγ2

)
∪
[

γ1

1 + γ2
,∞
)
. (1.3.45)

In words, the closure of the identified range of standard demand xu(·) over Z∗0 consists of all bundles

x ∈ R̄ for which x2 is in the set in (1.3.45). We cannot identify utility u(·) over this set since it is

disconnected, and it does not satisfy the exception in Section 1.3.4.
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1+γ2

γ1
1+γ2

πγ1
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2
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x2

Figure 1.15. Link with Other Identification Results. This figure illustrates the sets from Example
1.8. When income y is observed, the identified range of standard demand xu(·) in (1.3.45) is the union
of the red and green regions. When income y is not observed, the identified range of standard demand
xu(·) in (1.3.47) is just the green region.

Now, suppose that we observe pseudo-demand x∗θ(·) at every admissible w ∈ R2
++. Then, by Theorem

1.8, standard demand xu(·) is identified over:

W ∗θ,1 =

{
w ∈ R2

++ : e >
2γ1

1 + γ2

}
. (1.3.46)

Therefore, X ∗0 is the Cartesian product of [0,∞) and:

[
γ1

1 + γ2
,∞
)
. (1.3.47)

Unlike before, this range is an open rectangle in R2
++. Thus, utility u(·) is identified over the closure of the

range of standard demand xu(·) over W ∗θ,1. I display the sets in (1.3.45) and (1.3.47) in Figure 1.15. 4

1.4 Statistical Inference

Let us now consider the non-parametric estimation of the identifiable functional parameters in a stochas-

tic environment. I assume that we observe panel data, indexed by households i and months t. In the

application in Section 1.5, I observe consumption choices xit, expenditures eit, and prices pit, for a large

number n of households, and a small number T of months. I, therefore, state results in terms of pseudo-

demand x∗θ(·) (treating demand as a function of expenditure e, rather than income y), and consider n

tending to infinity with a fixed number of months T .

The organization of the remainder of this section is as follows: First, I show how to derive observed

prices and quantities from detailed scanner data. Formally, I show how to aggregate prices and quan-

tities into two groups—namely, food and non-food—using the Laspeyres and Paasche indices. Next, I

introduce the stochastic assumptions on the observations and latent stochastic model. Third, I introduce

a non-parametric spline estimator for the pseudo-demand function x∗θ(·). Last, I discuss how to use the
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identification strategy in Section 1.3 to estimate some latent functional parameters.

1.4.1 Prices and Quantities

In practice, we do not directly observe the normalized price of food pit, or the purchased quantities of food

xi1t and non-food xi2t. Instead, these goods are comprised of many homogeneous goods. For instance,

the dataset used in Section 1.5 contains information on “three million unique [universal product codes]

for 1073 products in 106 product groups” (see Ng, 2017, and Guha and Ng, 2019). For each household

i and month t, we observe a price pijkt and quantity xijkt, for every k = 1, . . . ,Kj and j = 1, 2. To

be precise, pi1kt denotes the price of the kth good classified as food, faced by household i in month t,

and pi2kt denotes the price of the kth good classified as non-food, faced by household i in month t. The

indices on xijkt have similar interpretations. Here, I show how to transform these observations with a

common quantity unit, and, then, define aggregate prices pijt and quantities xijt. From this transformed

data, we can construct the normalized price of food pit = pi1t/pi2t and expenditure eit = pitxi1t + xi2t.

When transforming the data, it is extremely important to avoid artificially forcing prices and/or

expenditures to be the same across households (see Blundell et al., 2003, and Kitamura and Stoye, 2018,

for examples of this practice). Indeed, prices vary significantly across retailers (even for identical goods),

expenditures vary significantly across households, and the identification strategy described in Section

1.3 relies heavily on the existence of variation in expenditures.

To aggregate goods, I make use of the Laspeyres and Paasche indices. Both indices measure prices

relative to a benchmark. Formally, let us consider average expenditure across all households in aggregate

good group j in month 0:

Ej0 ≡
1

n

n∑
i=1

Kj∑
k=1

pijk0xijk0. (1.4.1)

This expression can be rewritten:

Ej0 =

Kj∑
k=1


(

1

n

n∑
i=1

pijk0

)(
n∑
i=1

pijk0xijk0

)(
n∑
i=1

pijk0

)−1
 =

Kj∑
k=1

pjk0xjk0, (1.4.2)

where pjk0 denotes the average price of the kth good in aggregate group j in month 0:

pjk0 =
1

n

n∑
i=1

pijk0, (1.4.3)

and xjk0 denotes a benchmark bundle:

xjk0 =

(
n∑
i=1

pijk0xijk0

)(
n∑
i=1

pijk0

)−1

. (1.4.4)



www.manaraa.com

Chapter 1. Food Stamp Fraud 47

Now, consider the ratio of household i’s expenditure eijt =
∑Kj
k=1 pijktxijkt in aggregate group j in

month t, and benchmark expenditure across all households Ej0 from (1.4.1):

eijt
Ej0

=

 Kj∑
k=1

pijktxijkt

 Kj∑
k=1

pjk0xjk0

−1

. (1.4.5)

By definition, this expression is the product of the Laspeyres (price) index Lijt and the Paasche (quantity)

index Pijt such that:
eijt
Ej0

= LijtPijt, (1.4.6)

where these indices are defined by:

Lijt =
1

Ej0

 Kj∑
k=1

pijktxjk0

 and Pijt = eijt

 Kj∑
k=1

pijktxjk0

−1

. (1.4.7)

Loosely speaking, the Laspeyres index Lijt characterizes the relative evolution of the aggregate price

between the pair (pijkt, xijkt) and our “benchmark.” The interpretation of the Paasche index Pijt is

similar, but it characterizes the evolution of aggregate quantities. To illustrate, suppose Lijt = 2. This

value for Lijt implies that the benchmark bundle xjk0 costs twice as much in month t than in month 0.

Similarly, Pijt = 2 implies that the bundle xijkt from month t costs twice as much as the benchmark

bundle xij0 in month t. Because these indices characterize the relative evolutions of prices and quantities,

we expect to have aggregate prices and quantities that satisfy:

pijt = PjLijt and xijt = XjPijt, (1.4.8)

in which Pj and Xj denote values to be fixed, for each aggregate group j = 1, 2. For pijt and xijt to be

reasonable measures for the price and quantity of aggregate good j in month t, we also need Pj and Xj

to satisfy: Ej0 = PjXj , for each aggregate group j = 1, 2. This restriction follows from the coherency of

the definition of expenditure in aggregate group j—to be more precise, we expect the following amounts

to coincide:

eijt = Ej0LijtPijt and pijtxijt = PjXjLijtPijt. (1.4.9)

That being said, even if we impose these equalities, there exists a remaining degree of freedom. Indeed,

the goods that make up an aggregate group are almost always measured in qualitatively different units—

for example, bottles, kilograms, or packs of six. We need to account for this degree of freedom by defining

an Artificial Quantity Unit (AQU). Without loss of generality, we can choose an AQU by fixing Xj = 1,
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for each aggregate group j = 1, 2. Together, these two restrictions yield:

pijt =

Kj∑
k=1

pijktxjk0 and xijt = eijt

 Kj∑
k=1

pijktxjk0

−1

. (1.4.10)

Therefore, the aggregate price pijt is the cost of the benchmark bundle xjk0 in month t, and the aggregate

quantity xijt is expenditure eijt, relative to the cost of the benchmark bundle xjk0 in month t.

Remark 1.9. I have used the Laspeyres-Paasche decomposition in a non-standard way. This decompo-

sition is usually used to aggregate across both goods and households (to measure inflation or deflation).

Here, I do not aggregate across households to avoid artificially forcing prices and/or expenditures to be

the same across households.

Remark 1.10. In general, it is not appropriate to aggregate by averaging prices and summing quantities

within aggregate groups. Formally, this type of aggregation would yield expenditures ēijt with the form:

ēijt =
1

Kj

 Kj∑
k=1

pijkt

 Kj∑
k=1

xijkt

 =
1

Kj

Kj∑
k=1

Kj∑
`=1

pijktxij`t. (1.4.11)

These expenditures are rarely equal to eijt, and can even move in a different direction than eijt. For

example, if aggregate good group j is comprised of Kj = 2 goods, and:

pij11 = pij21 = xij11 = xij21 = 1, pij12 = xij22 = 2, and pij22 = xij12 =
1

2
, (1.4.12)

then we obtain constant expenditure with eij1 = eij2 = 2, but a strict increase in ēijt:

ēij1 =
1

2
(1 + 1)(1 + 1) = 2 <

25

8
=

1

2

(
2 +

1

2

)(
1

2
+ 2

)
= ēij2. (1.4.13)

1.4.2 Latent Stochastic Model

Now that we have defined coherent notions of eit, pit, and xit, we can formally describe the assumptions

on the observations and latent stochastic model.

Assumption B.4. We jointly observe wit = (eit, pit) and xit, constrained by budget exhaustion pitxi1t+

xi2t = eit, for every household i = 1, . . . , n and month t = 1, . . . , T .

Assumption B.4 implicitly requires every household to consume positive quantities of the goods used

to construct the normalized price of food pit using the method described in Section 1.4.1, in each month

(see Section IV.A in Blundell, Horowitz, and Parey, 2017, and Section 2.4.1 in Chapter 2, for two

examples of this type of restriction in non-parametric settings). Because these goods are aggregate, it is

assumed that we can drop the households violating this requirement without inducing a selection bias.
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Let Qxi1t(τ |wit) denote the τ th quantile of consumption xi1t conditional on wit such that 0 < τ < 1.9

Assumption 1.9.

(i) Pairs (wit, xit) are independently and identically distributed.

(ii) There exists τ ∈ (0, 1) such that Qxi1t(τ |wit) = x∗θ,1(wit), for some pseudo-demand function x∗θ(·).

Assumption 1.9 says that the τ th conditional quantile of consumption is a pseudo-demand function.

We can focus on the consumption of food xi1t because there exists a deterministic one-to-one relationship

between the components of consumption xit given wit. I focus on the τ th conditional quantile, without

providing a specific numerical value for τ (by, for example, restricting attention to the median) in order

to maintain generality, and facilitate some discussions that follow. Assumption 1.9 does not assume that

every conditional quantile of consumption Qxi1t(τ |wit) yields a pseudo-demand function.

It is important to notice that, Assumption 1.9 does not assume that the conditional mean of consump-

tion is a pseudo-demand function (with the form in Section 1.2.12). Indeed, it would be unreasonable

to impose such an assumption. For example, if preferences are stochastic, independent of pairs wit,

and demand for food x∗θ,1(·) is weakly increasing in a univariate parameter α characterizing unobserved

heterogeneity, then, loosely speaking, every conditional quantile of consumption of food xi1t is a pseudo-

demand function (with the correct form), and the τ th conditional quantile of consumption coincides with

the pseudo-demand function associated with the τ th conditional quantile of heterogeneity α such that:

Qxi1t(τ |wit) = x∗θ,1(wit, ατ ),

where x∗θ,1(wit, α) is the pseudo-demand function associated with the parameter α evaluated at wit, and

ατ is the τ th conditional quantile of heterogeneity α (see Example 1.9 for a concrete example in which α

is the preference parameter in a Stone-Geary specification, Matzkin, 2003, and Imbens and Newey, 2009,

for variants of this type of result concerning quantile demand, and Blundell, Kristensen, and Matzkin,

2014, and Blundell, Horowitz, and Parey, 2017, for applications of quantile demand). However, there is

no reason to believe that average consumption will have this form. Average consumption will rarely adopt

this form because the structure of the problem almost always implies that the conditional distribution

of the deviations from the conditional mean is asymmetric at some admissible pair w ∈ R2
++. This

asymmetry follows from the fact that, when preferences are stochastic, the locations of the kinks of

pseudo-demand x∗θ,1(·) can vary significantly across households. In such an environment, if we were to

average consumption, we could obtain a function with many kinks, or even a function that is strictly

increasing, without any kinks (because it is the conditional average of many piecewise linear functions).

Example 1.9. Suppose that the household has a Stone-Geary utility function, defined by: u(x) =

xα1x
1−α
2 , for every x ∈ R̄. Under this specification, standard demand for food has the form: xu,1(z) =

9Formally, I define Qxi1t (τ |wit) to be the largest value of q such that Pr(xi1t ≤ q|wit) = τ .
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αy/p, for each z ∈ R2
++. Further suppose that the policy b(·) has the form with fixed prices in (1.2.6)

subject to γ2 < 1. These assumptions imply that the pseudo-demand function x∗θ,1(·, α) has the form:

x∗θ,1(w,α) =


αe
p , if e > γ1

α+γ2(1−α) ,

γ1−γ2e
p(1−γ2) , if γ1(α+π(1−α))

α+πγ2(1−α) ≤ e ≤
γ1

α+γ2(1−α) ,

αe
p(α+π(1−α)) , if γ1(α+ π(1− α)) < e < γ1(α+π(1−α))

α+πγ2(1−α) ,

(1.4.14)

for every admissible w ∈ R2
++. The form of this function can be verified by following the usual steps:

constructing demand xθ(·, α) and expenditure eθ(·, α), inverting expenditure eθ(·, α) to get the pseudo-

income function y∗θ(·, α), then plugging this function into demand xθ(·, α). These steps are omitted for

brevity. It is also easy to verify that this function coincides with the first component of the pseudo-

demand function x∗θ(·) in (1.2.40) when α = 1/2, as expected. Now, let us suppose that the household’s

relative preference for food α is independently drawn from a uniform distribution with support [1/4, 3/4].

We can immediately see that the lowest admissible value of expenditure e, given p, varies with α, and

that this lower bound ranges from γ1(1+3π)
4 to γ1(3+π)

4 . These bounds do not depend on p because, under

this specification, the locations of the boundaries of the regimes of pseudo-demand do not depend on p

(see the form in (1.4.14), and Figure 1.9 for these boundaries given α = 1/2). Since x∗θ,1(·, α) is weakly

increasing in α, the τ th conditional quantile for consumption of food xi1t coincides with the pseudo-

demand function associated with the τ th quantile of the distribution of α (although not uniquely when

it is in the second regime), at every e ≥ γ1(3+π)
4 . In particular, it coincides with α = 1+2τ

4 . We also see

that, for any admissible pair w, if the pseudo-demand function associated with α is in the third regime,

then so is the pseudo-demand function associated with any α′ ≤ α, verfiying the idea that fraud is “more

likely” to occur at lower quantiles. I illustrate the conditional mean, and two conditional quantiles in

Figure 1.16. In this figure, average consumption does not have the form of a pseudo-demand function (as

it appears continuously-differentiable), but the quantiles do whenever e is larger than γ1(3+π)
4 . If we were

to introduce a positive probability that the household does not receive benefits, even though it is eligible,

and a positive probability that the household does not commit fraud, even though it has an incentive to

do so, we would lose the equivalence between the conditional quantiles and pseudo-demand, but, if these

“errors” are independent of the distribution of heterogeneity α in the population, then there would still

exist a value τ ∈ (0, 1) such that Qxi1t(τ |wit) coincides with the pseudo-demand function x∗θ,1(·, ατ ). 4

1.4.3 Non-Parametric Estimation

The assumptions on the observations and latent stochastic model in Section 1.4.2 provide the structure

that we need to discuss the non-parametric estimation of pseudo-demand x∗θ(·). The primary difficulty

follows from the fact that this function is non-differentiable along two curves on the interior of the set

of admissible pairs w ∈ R2
++, and that these curves have unknown locations. These curves are the ridge
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Figure 1.16. Average and Quantile Demand in Example 1.9. The red line denotes the conditional
average of consumption for food. The blue line denotes the quantile associated with τ = 0. The green

line denotes the quantile associated with τ = 1. The dotted line denotes γ1(3+π)
4 . This figure was

generated using γ1 = 100, γ2 = 0.7, and π = 0.5.

and valley curves, respectively characterizing the “lower” and “upper” boundaries of the second regime,

as defined in Section 1.2.12. In this section, I develop a non-parametric estimator for pseudo-demand

x∗θ(·) and illustrate its performance using Monte Carlo simulations.

I consider two steps: First, I approximate the pseudo-demand function x∗θ,1(·) using linear splines in a

quantile regression with a least absolute shrinkage and selection operator (LASSO). Since pseudo-demand

x∗θ,1(·) is continuously-differentiable everywhere except the curves of interest, the partial derivative of

a good approximation of pseudo-demand with respect to expenditure e will experience a large “jump”

at these curves. Since pseudo-demand x∗θ,1(·) is strictly increasing in the first and third regimes, and

decreasing in the second regime, this “jump” will always be negative on the ridge curve, and will always

be positive on the valley curve. Second, I estimate the ridge and valley curves by solving for the function

of price p on which the approximation of pseudo-demand x∗θ,1(·) has (i) the largest negative jump in

its partial derivative with respect to e, and (ii) the function of price p on which the approximation of

pseudo-demand x∗θ,1(·) has the largest positive jump in its partial derivative with respect to e. Since the

form of our spline approximation is known, these functions have closed-form solutions. After estimating

the ridge and valley curves, the econometrician could go back to improve the estimate of pseudo-demand

x∗θ,1(·) by introducing a constrained non-parametric estimator. I do not complete this additional step

because the spline estimator performs well.
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Spline Approximation of Pseudo-Demand

Let us start by describing how to estimate pseudo-demand x∗θ,1(·) without knowing the location of the

non-differentiable curves. Formally, I use the following linear spline approximation:

s(w;µ, κ, ξ) ≡ β0 + β1e+ β2p+ β3ep

+
∑
j

δj(e− κj)+ +
∑
k

νk(p− ξk)+ +
∑
j,k

ηj,k(e− κj)+(p− ξk)+,
(1.4.15)

where κ1 < · · · < κJ denotes a collection of “knots” for expenditure, ξ1 < · · · < ξK denotes a collection

of “knots” for price, and µ = (β, δ, ν, η) ∈ R4+J+K+JK denotes a vector of real-valued coefficients (see

Chen, 1993, Stone, 1994, and Chen, 1997, for the use of products in multivariate splines, and Section 2.4

in Harrell, 2001, for an overview of spline approximations). The spline function s(·) approximates pseudo-

demand x∗θ,1(·) by gluing together small planes. It is continuous because it is the sum of continuous

functions. Clearly, the set of all linear splines with the form in (1.4.15) is dense in the set of all continuous

real-valued functions on compact sets with respect to the topology of uniform convergence. Therefore,

for any pseudo-demand function x∗θ,1(·), there exists a collection of knots and parameters for which

s(w;µ, κ, ξ) is arbitrarily close to x∗θ,1(·) with respect to the uniform norm over the set [κ1, κJ ]× [ξ1, ξK ].

Because the linear spline approximation in (1.4.15) has 4 + J + K + JK parameters, and we want

J and K to be large (to ensure a good approximation), if we were to estimate this approximation by

minimizing the sum of least absolute deviations, we would risk overfitting our data (see Koenker and

Bassett, 1978, for a seminal paper describing quantile regressions, Koenker et al., 1994, for the use of

splines in a quantile regression, and Koenker, 2005, for a broad presentation). It is, therefore, common

to introduce a penalization (e.g., LASSO). Note, it is best to penalize δ, ν, and η with different weights

because the degree of overfitting can vary across these parameters (see Ruppert and Carroll, 1997, for

more on penalization).

A lasso-penalized quantile spline estimator minimizes:

∑
i,t

ρτ
[
xi1t − s(wit;µ, κ, ξ)

]
+ λ0

∑
j

δj + λ1

∑
k

νk + λ2

∑
j,k

ηj,k, (1.4.16)

with respect to the vector of parameters µ given λ, κ, and ξ, in which ρτ (·) is the usual check function,

defined by ρτ (q) = q(τ − 1{q < 0}), for every q ∈ R, and λ ∈ R3
++ is a vector of tuning parameters

characterizing the degrees of penalization for δ, ν, and η (see Tibshirani, 1996, for more on LASSO).

Let µ̂τ (κ, ξ) denote the argument that minimizes (1.4.16) given the parameter λ and the knots κ and ξ.

The estimator µ̂τ (κ, ξ) is parametric because it considers the number and location of knots to be

fixed. We can construct a non-parametric estimator by allowing the number of knots to increase with

the number of observations nT . Loosely speaking, if we increase the number of knots, it is important to

ensure that these knots become sufficiently “dense” in the domain of interest. In what follows, I fix a
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closed rectangle of admissible pairs w ∈ R2
++ by fixing the end points of the domain of interest—that is,

κ1, κJ , ξ1, and ξK . I, then, take a grid of evenly spaced points over this rectangle, and estimate pseudo-

demand x∗θ,1(·) over this interval by allowing the number of evenly spaced points to tend to infinity.

Because smoothing is moderated with penalization, the number of knots is not too important, as long

as K and J are above minimum thresholds, and increasing in nT (see, for instance, the introduction in

Ruppert, 2002, for an overview of the literature on knot selection, and Section 3 in the same paper for a

discussion). One simple option is to choose the number of knots such that K = J using a cross-validation

procedure by applying Akaike’s Information Criterion (AIC).

Remark 1.11. In general, there is no closed-form solution to the minimization problem associated with

(1.4.16). Furthermore, when J and K are large, it is computationally infeasible to optimize (1.4.16).

Fortunately, we can solve this problem by reformulating the problem as a linear program. I make use

of the modified version of the Barrodale and Roberts (1974) algorithm, defined in Koenker and D’Orey

(1987, 1994) and implemented in the quantreg package in R. To illustrate, let us consider the median.

In this case, the Barrodale and Roberts (1974) algorithm solves the problem:

min
∑
i,t

uit + vit s.t. s(wit;µ0, κ, ξ)− s(wit;µ1, κ, ξ) + uit − vit = yit,

uit ≥ 0, vit ≥ 0, µ0 ≥ 0, and µ1 ≥ 0, ∀i, t,
(1.4.17)

with respect to uit, vit, µ0, and µ1. This reformulation separates the absolute value in the objective

function in (1.4.16) into its positive and negative components, removing the non-linearity in this objective

function (a procedure sometimes referred to as variable splitting), and separates the parameter µ into its

positive and negative components, so that we can apply standard efficient linear programming methods.

Ridge and Valley Estimation

We can now use the spline approximation of pseudo-demand x∗θ,1(·) to construct a non-parametric esti-

mator for the ridge and valley of pseudo-demand x∗θ,1(·). As mentioned, we are looking for the locations

of negative and positive jumps in the partial derivative of the approximation of the pseudo-demand func-

tion x∗θ,1(·) with respect to expenditure e. Indeed, pseudo-demand x∗θ,1(·) is continuously-differentiable

everywhere except the curves that we want to estimate, implying that its left and right partial derivatives

with respect to expenditure should align everywhere except on these curves. The procedure in this sec-

tion is related to those in Mueller (1992), Mueller and Song (1997), and Huh and Carriere (2002), and the

“diagnostic step” in Gijbels and Goderniaux (2004b), the last of which makes use of the second derivative

(see Klotsche and Gloster, 2012, for a review of some techniques used to non-parametrically estimate the

location of a “kink” in a univariate setting). There are four primary differences between the estimator

in this section and most of this body of literature: (i) the estimator in this section is constructed with

the specific intention of detecting more than one kink, (ii) the estimator in this section looks for one
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kink that is known to have an increase in the partial derivative of pseudo-demand x∗θ,1(·) with respect to

expenditure, and one kink that is known to have a decrease in the partial derivative of pseudo-demand

x∗θ,1(·) with respect to expenditure (rather than, say, two kinks with unknown directions for the changes

in this partial derivative), (iii) the estimator in this section is applied to the conditional quantile (rather

than the mean), and, most importantly, (iv) the estimator in this section is for a bivariate environment

(instead of a univariate environment), so that we are estimating non-parametric functions, not points.

The partial derivative of the spline approximation s(w;µ, κ, ξ) is equal to:

∂s(w;µ, κ, ξ)

∂e
= β1 + β3p+

∑
j

δj1{e > κj}+
∑
j,k

ηj,k1{e > κj}(p− ξk)+, (1.4.18)

at every admissible w ∈ R2
++ such that e 6= κj , for any j = 1, . . . , J , where 1{·} is the indicator function

that is equal to 1 if the logical argument inside the brackets is true, and equal to 0, otherwise. Therefore,

the left and right partial derivatives of this approximation are equal whenever expenditure e is not at

a knot κj . Conversely, this partial derivative jumps at every knot κj , and if there exists a point with

a large jump in the partial derivative of this approximation, it necessarily happens at one of the knots.

The difference in the left and right partial derivatives at knot κj is:

∆j(p;µ, κ, ξ) = δj +
∑
k

ηj,k(p− ξk)+. (1.4.19)

If the number and location of knots were fixed, then a natural estimator for the ridge curve r(p) would

be the knot κj with the lowest ∆j(p; µ̂τ (κ, ξ), κ, ξ) at each p, and a natural estimator for the valley curve

v(p) would be the knot κj with the highest ∆j(p; µ̂τ (κ, ξ), κ, ξ) at each p. The resulting estimators are

necessarily step functions with codomain {κ1, . . . , κJ}. These estimators can be extended to the setting

in which knots are not fixed (allowing the number of knots to grow with nT ). Let r̂(p) and v̂(p) denote

these estimators, respectively. While omitted, these estimators can be smoothed after the fact, if desired.

Discussion

Let us now discuss some aspects of the estimators described above. First, it is worth mentioning that

there is no particular reason why I use a linear spline approximation instead of, say, a cubic spline

approximation. One advantage of the linear spline is the resulting simplification of the optimization

problem used to find the location of the smallest or largest jump in the partial derivative of the approx-

imation with respect to expenditure. Second, notice that, instead of using splines, I could have used

another non-parametric estimator in the first step. For example, I could have used a local linear (or

quadratic) fit to estimate a smooth approximation of pseudo-demand x∗θ,1(·) (see Nadaraya, 1964, and

Watson, 1964, for seminal papers on local regressions, Lu, 1996, for local linear and quadratic fits, as

well as Yu and Jones, 1998, and Hallin et al., 2009, for the application of such estimators to quantile
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regressions). There are two issues with this alternative: (i) It would make it computationally challenging

to find the ridge and valley curves, and (ii) it is local (unlike the spline approximation), implying that

the asymptotics for the resulting estimators for the ridge and valley curves would have to be evaluated

pointwise, which is not desirable. Another example would be a polynomial sieve estimator. This type

of estimator would fix the problems associated with the local estimator described above, but it is often

unstable at the boundaries, making it more likely to “miss” the ridge and valley curves (see Section

2.4.8 in Harrell, 2001, for a broad discussion of the advantages of splines). Third, there is a body of

statistical literature addressing the optimal estimation of change-points in the derivatives of univariate

functions observed with error (see Cheng and Raimondo, 2008, Wishart, 2010, 2011a, 2011b, Han et al.,

2014, Bengs and Holzmann, 2019, and Tuvaandorj, 2020). This type of analysis is, however, challenging

to extend to a bivariate environment—the estimator from the previous section is likely the best place to

start. Fourth, it is worth mentioning that, for the two-step estimator described in this section to work,

it is vital to have a grid with enough knots. If we have only a few knots and the ridge or valley curve

lies between two knots, then the jump in the derivative that we are looking for can be averaged between

the knots above and below this curve, making it unlikely that we will have the ability to detect this

curve.10 Fifth, it is always possible to find a ridge and valley using the estimator described in this section

(although they might be small or have the wrong order). Tests for kinks exist in similar environments

(see Gijbels and Goderniaux, 2004a), but a test for the current setting is left for future research.

Monte Carlo Simulations

I now provide Monte Carlo simulations to illustrate the small sample performance of the two-step esti-

mator for the ridge and valley curves described above. To simulate, I assume that preferences have the

Stone-Geary specification in Example 1.9, and provide results for two distinct data generating processes:

(i) First data generating process: I draw income y from a log-normal distribution with mean 4

and standard deviation 0.5 (on the log-scale), and draw the price p from a log-normal distribution

with mean 0 and standard deviation 0.5 (on the log-scale). I draw a preference parameter α from

a uniform distribution with support [1/4, 3/4]. I construct expenditure and pseudo-demand given

α, γ, and π, as defined in (1.4.14). Consumption xi1t equals pseudo-demand for food.

(ii) Second data generating process: I draw income y from a log-normal distribution with mean 4

and standard deviation 0.5 (on the log-scale), and draw the price p from a log-normal distribution

with mean 0 and standard deviation 0.5 (on the log-scale). I construct expenditure and pseudo-

demand given α = 0.5, γ, and π, as defined in (1.4.14). I construct consumption xi1t for food by

adding an error to pseudo-demand for food. This error is drawn from a normal distribution with

10I also recommend using evenly-spaced knots because our main concern is having enough knots around the locations of
the ridge and valley curves (which are not known ex ante). This practice differs from the standard practice of placing the
knots at the quantiles of the design variables—that is, e and p.
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mean 0 and standard deviation 3.

In the first data generating process, preferences are stochastic; in the second data generating process,

preferences are fixed, but consumption is observed with error. For these simulations, I use γ1 = 100,

γ2 = 0.7, and π = 0.5, and I focus on the conditional median, for simplicity. In the first data generating

process, the conditional mean of consumption does not coincide with a pseudo-demand function, as

described in Section 1.4.2 and illustrated in Example 1.9; in the second data generating process, the con-

ditional mean and median coincide. In each case, the conditional median of consumption coincides with

the pseudo-demand function in (1.4.14) given α = 0.5, at every expenditure e larger than γ1(3+π)
4 = 87.5.

This pseudo-demand function is illustrated in Figure 1.17. In each case, the ridge curve r(p) = (1+π)γ1
1+πγ2

is constant at approximately 111.11, and the valley curve v(p) = 2γ1
1+γ2

is constant at approximately

117.64. A simulated sample distribution of expenditures eit and prices pit is illustrated in Figure 1.18.

The colour of each observation in this figure denotes the value of consumption xi1t. Notice that, it is

difficult to visually discern the non-linearity in consumption using the naked eye. This figure is intended

to illustrate that fraud can be “hidden,” and that we require the proper economic tools to be able to

determine whether or not there exists fraud in a dataset. For each data generating process, I approxi-

mate the pseudo-demand function using the spline estimator described in Section 1.4.3, then estimate

the ridge and valley curves using the procedure in Section 1.4.3. In Tables 1.1 and 1.2, I provide the

results for nT = 500 and nT = 1000.11 Each table provides the mean and variance of several measures

of distance between the true ridge and valley curves, and their estimated counterparts. Knots are evenly

spaced on [90, 135] × [0.5, 1.5]. This domain is chosen to ensure that observations are well-distributed

(see the samples in Figure 1.18). When nT = 500, I use J = K = 50, λ0 = 50, λ1 = 110, and λ2 = 35,

and when nT = 1000, I use J = K = 70, λ0 = 40, λ1 = 100, and λ2 = 25. Results are calculated from

S = 100 draws. In each table, we see that r̂(p) underestimates r(p), and that v̂(p) overestimates v(p).

This bias follows from the fact that we are smoothing the pseudo-demand function in our approximation.

Fortunately, this bias reduces quickly with the sample size nT . The variance of each measure of distance

also decreases quickly in the sample size nT . In addition to the numbers reported in these tables, it

should be noted that, in each simulation (consisting of 100 draws and 50 points of evaluation for both

r̂(p) and v̂(p) in each draw), there were less than 6 instances (or 6×100
2×50×100 = 0.06% of evaluations) in

which an estimate of a ridge or valley touched the boundary of the grid. Since this percent is small, we

can conclude that the size of the chosen rectangle [90, 135] × [0.5, 1.5] had a negligible impact on these

results. On the left of Figure 1.19, I illustrate the spline approximation of pseudo-demand x∗θ,1(·) for

one simulated sample given the first data generating process. As expected, this spline approximation

looks similar to the pseudo-demand function in Figure 1.17. On the right of Figure 1.19, I illustrate an

estimate of the ridge and valley curves. In this figure, we see three important features: (i) the estimated

curves are close to the true curves, (ii) the estimated curves are step functions, and (iii) r̂(p) is below

11Note, under Assumption 1.9(i), estimation depends on the sample size nT , but not separately on the value of n or T .
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Figure 1.17. Pseudo-demand x∗θ,1 in (1.2.40) given γ1 = 100, γ2 = 0.7, and π = 0.5.

r(p) and v̂(p) is above v(p). The third feature is expected given the bias observed in Tables 1.1 and 1.2.

1.5 Application

In this section, I apply the economic tools from Sections 1.2 to 1.4. First, I analyze the Panel Survey

of Income Dynamics (PSID). Second, I analyze the Nielsen Homescan Consumer Panel (NHCP). The

analysis of the PSID aids in the analysis of the NHCP.

1.5.1 Panel Survey of Income Dynamics

The Panel Survey of Income Dynamics (PSID) is a longitudinal survey in the United States. The PSID

has collected information on households (and their descendants) since 1968. The original sample consists

of approximately 5,000 households. Roughly 60% of this sample is representative of the population in

the United States. The remaining 40% of the sample consists of low-income households. The households

are surveyed every year from 1968 to 1997, and every second year from 1999 to 2017. The PSID includes

questions on household characteristics, income, benefits, and expenditures. In 1999, 2001, and 2003,

households were asked whether they have been disqualified from receiving benefits for breaking the rules

since the previous survey. In Appendix 1.E, I provide summary statistics and a description of formatting.



www.manaraa.com

Chapter 1. Food Stamp Fraud 58

Figure 1.18. Simulated Samples. On the left, I illustrate a simulated sample using the first data
generating process. On the right, I illustrate a simulated sample using the second data generating
process. These figures use the same draws for z. Colour indicates the value of consumption xi1t.

Figure 1.19. Ridge and Valley Estimates. On the left, I illustrate an estimated linear spline approx-
imation of the pseudo-demand x∗θ,1(·) under the first data generating process. On the right, I illustrate
the corresponding ridge and valley estimates, r̂(p) and v̂(p). The red lines are r(p) and v(p). The blue
line is r̂(p). The green line is v̂(p).
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Table 1.1. Monte Carlo results associated with the first data generating process. For these simulations,
I use γ1 = 100, γ2 = 0.7, and π = 0.5, and estimate the location of the ridge r(p) and valley v(p) for the
conditional median at p = 3, 4. When nT = 500, I use J = K = 50, λ0 = 50, λ1 = 110, and λ2 = 35,
and when nT = 1000, I use J = K = 70, λ0 = 40, λ1 = 100, and λ2 = 25. Results are calculated from
S = 100 draws.

nT = 500 nT = 1000
Mean Var. Mean Var.

r̂s(3)− r(3) -1.92 0.74 -1.59 0.36

v̂s(3)− v(3) 7.45 29.52 4.62 26.44

r̂s(4)− r(4) -1.06 13.54 -1.35 1.89

v̂s(4)− v(4) 6.14 77.79 4.92 29.39
1
K

∑
k

(
r̂s(ξk)− r(ξk)

)
-1.41 5.82 -1.44 0.98

1
K

∑
k

(
v̂s(ξk)− v(ξk)

)
6.34 66.03 4.76 26.67

1
K

∑
k |r̂s(ξk)− r(ξk)| 2.31 3.86 1.66 0.55

1
K

∑
k |v̂s(ξk)− v(ξk)| 8.41 38.11 5.21 22.20( ∫ 1.5

0.5
(r̂s(p)− r(p))2dp

)1/2
2.42 5.24 1.69 0.63( ∫ 1.5

0.5
(v̂s(p)− v(p))2dp

)1/2
8.51 39.12 5.31 23.23

Table 1.2. Monte Carlo results associated with the second data generating process. For these simulations,
I use γ1 = 100, γ2 = 0.7, and π = 0.5, and estimate the location of the ridge r(p) and valley v(p) for the
conditional median at p = 3, 4. When nT = 500, I use J = K = 50, λ0 = 50, λ1 = 110, and λ2 = 35,
and when nT = 1000, I use J = K = 70, λ0 = 40, λ1 = 100, and λ2 = 25. Results are calculated from
S = 100 draws.

nT = 500 nT = 1000
Mean Var. Mean Var.

r̂s(3)− r(3) -2.55 23.43 -1.09 2.33

v̂s(3)− v(3) 3.22 12.19 1.27 1.12

r̂s(4)− r(4) -1.57 54.51 -0.69 18.44

v̂s(4)− v(4) 2.42 15.21 1.23 1.19
1
K

∑
k

(
r̂s(ξk)− r(ξk)

)
-2.15 30.90 -0.99 4.20

1
K

∑
k

(
v̂s(ξk)− v(ξk)

)
2.87 4.74 1.23 1.00

1
K

∑
k |r̂s(ξk)− r(ξk)| 3.87 22.52 1.49 2.94

1
K

∑
k |v̂s(ξk)− v(ξk)| 2.97 4.20 1.31 0.79( ∫ 4

3
(r̂s(p)− r(p))2dp

)1/2
4.07 26.43 1.60 5.95( ∫ 4

3
(v̂s(p)− v(p))2dp

)1/2
3.14 6.48 1.34 0.81
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Table 1.3. Number and proportion of households that report being disqualified from receiving food
stamps for breaking the rules (conditional on receiving a positive amount of benefits or being disqualified)
in the PSID by year, in the years in which this question was asked.

Year Number Proportion
1999 22 0.0316
2001 7 0.0151
2003 15 0.0171

Food Stamp Fraud

First, let us begin by analyzing the extent of benefit fraud in the PSID. There are two natural ways to

approach this analysis: First, we can analyze the proportion of households that report being disqualified

from receiving food stamps for breaking the rules (since the previous survey). This preliminary analysis

is presented in Table 1.3. In this table, we see that approximately 2 percent of households with benefits

report being disqualified in each survey year. This number should be interpreted with some caution: This

number likely includes households that have been disqualified for reasons other than the type of fraud

described in this chapter. Furthermore, this number only includes households that (i) broke the rules,

(ii) got caught, (iii) got disqualified (which requires a sufficient amount of evidence), and (iv) reported

it. Second, because we have information on benefits and food expenditure, we can apply Corollary 1.1 to

compute an estimate of the amount of fraud in the PSID for households that have not been disqualified.

Table 1.4 provides the number and proportion of households that report spending less on food than they

receive in benefits. This table also reports the average difference between food expenditure and benefits

(conditional on food ependiture being smaller than benefits). In this table, we see that approximately

2 to 10 percent of households that receive benefits have consumption that is consistent with fraud, and

that, on average, these households are spending approximately $325 to $1,800 less on food than they

receive in benefits. In Figure 1.20, we see the distribution of the difference between food expenditure

and benefits. These numbers can be used to estimate the expected amount of fraud in the economy. For

example, there were approximately 42,123,000 participants in SNAP in 2017 (see Table 1.6 in Appendix

1.A). Therefore, if the probability of fraud is 0.0229 and the expected amount of benefits exchanged

conditional on fraud is $1,108.13, then just over $1 billion dollars of benefits were illegally exchanged

in 2017. This estimate is extremely similar to the estimate of $1.1 billion in (Willey et al., 2017). Of

course, these numbers do not account for misreporting or measurement error. Unfortunately, we cannot

learn much more from the PSID because it does not have detailed information about prices or non-food

expenditures.
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Table 1.4. This table reports the number and proportion of households that report spending less than
their allotment of benefits on food (intended for consumption at home), and total food in the PSID by
year, and the mean difference between benefits and food expenditure (conditional on being positive).
Results are conditional on having positive benefits and expenditure.

Food at Home Total Food
Year Number Proportion Difference Number Proportion Difference
1999 10 0.0184 770.40 31 0.0487 324.29
2001 16 0.0441 1,444.18 25 0.0589 1,294.32
2003 26 0.0388 696.73 46 0.0585 800.78
2005 28 0.0342 782.60 71 0.0703 464.15
2007 40 0.0457 512.92 71 0.0665 434.15
2009 30 0.0350 1,215.46 67 0.0633 891.14
2011 52 0.0460 1,531.53 131 0.0906 926.20
2013 54 0.0387 1,786.07 121 0.0668 1,070.20
2015 35 0.0271 1,601.31 82 0.0537 932.42
2017 30 0.0229 1,108.13 50 0.0328 663.18

Figure 1.20. Differences Between Food Expenditure and Benefits. On the left, I illustrate the
distribution of the difference between food expenditure (intended for consumption at home) and benefits
in the PSID, conditional on the households spending less on food than it receives in benefits. On the
right, I illustrate the distribution of the difference between total food expenditure and benefits in the
PSID, conditional on the households spending less on food than it receives in benefits.
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Demographics

While the above analysis leaves much to be desired, it is useful because it provides a way to determine

the demographics of the households that have been disqualified, and those that exhibit behaviour con-

sistent with benefit fraud. These demographics can, then, be used to construct a subsample in a more

sophisticated analysis. In this section, I summarize the important results from a more complete analysis

of the demographics of households in Appendix 1.E.1. In particular, I discuss the primary observable

differences between (i) all households in the PSID, (ii) households receiving food stamps in the PSID,

(iii) disqualified households in the PSID, and (iv) households that report spending less on food (intended

for home consumption) than they receive in benefits in the PSID.12

This analysis leads to the following findings: On average, households receiving food stamps have (i)

more members, (ii) younger and disproportionately female heads, (iii) lower income, and (iv) less edu-

cation. They are also disproportionately located in the South. Disqualified households, and households

that report spending less on food than they receive in benefits, have similar demographics to the entire

subsample of households receiving food stamps, with a few exceptions: These households have even

younger and more disproportionately female heads, and even lower income. These households are also

even more likely to be located in the South. The finding that these households have even lower income

agrees with the theoretical finding that only the poorest households have an incentive to commit fraud.13

1.5.2 Nielsen Homescan Consumer Panel

Let us now consider a more sophisticated analysis of food stamp fraud. In this section, I introduce the

Nielsen Homescan Consumer Panel (NHCP), estimate quantile pseudo-demand functions, and apply the

steps in Section 1.3.3 to get bounds for the structural parameters of interest.

The NHCP is a detailed longitudinal dataset that tracks the purchases of households in the United

States. Participating households scan all purchased goods with a barcode scanner provided by Nielsen.

Prices are entered by the household or linked with retailer data.

I restrict attention to August to October in 2016. These months are consecutive, and avoid holidays

(on which consumption might be irregular) such as Independence Day, Christmas Day, and New Year’s

Eve. The short time frame reduces the possibility of changing tastes or changing product availability.

I keep all households with positive expenditure in eight distinct categories of products14 in all months.

After aggregating purchases by month, we are left with 4,807 households and 14,421 observations. In Ap-

12I consider food intended for home consumption because households cannot use food stamps to buy “hot foods or hot
food products ready for immediate consumption” (see Section 3(k)(1) in the Food and Nutrition Act of 2008 and Appendix
1.A.8 for more).

13This analysis was completed independently for disqualified households and households that report spending less on
food than they receive in benefits (see Appendix 1.E.1). The results are presented together because each analysis results
in a similar conclusion.

14These categories are (i) general merchandise (including health and beauty), (ii) dry grocery, (iii) frozen foods, (iv)
dairy, (v) deli and packaged meat, (vi) fresh produce and “magnet data” products (consisting of products without Universal
Product Codes such as fresh produce), (vii) non-food grocery, and (viii) alcohol.
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Table 1.5. Summary of the normalized expenditure eit, normalized price pit, and consumption xit
including the mean, standard deviation, ratio of the standard deviation to the mean, and quantiles.

Quantiles

Variable Mean Std. Dev. Ratio 0% 25% 50% 75% 100%

eit 2.55 1.40 0.55 0.21 1.58 2.26 3.17 23.79
pit 1.51 0.64 0.42 0.12 1.07 1.42 1.83 6.92
xi1t 1.04 0.53 0.51 0.09 0.67 0.94 1.30 8.77
xi2t 0.99 0.64 0.64 0.07 0.56 0.85 1.25 10.49

Figure 1.21. Sample distribution of the normalized price pit and normalized expenditure eit. On the
left, colour indicates a bivariate kernel density estimate. On the right, colour indicates the quantity of
food consumption xi1t.

pendix 1.E.2, I provide a detailed description of variables, formatting, and aggregation (using the method

described in Section 1.4.1). I also provide summary statistics and a discussion of the representativeness

of the NHCP (after formatting).

In Table 1.5, I provide summary statistics for normalized expenditure eit, the normalized price pit,

and consumptions, xi1t and xi2t, pooled across households and months, and in Figure 1.21, I plot the

sample distributions of these variables. In particular, on the left of this figure, colour indicates a bivariate

kernel density estimate, and on the right of this figure, colour indicates the quantity of food consumption

xi1t. In this figure, we see that the joint distribution of (eit, pit) is approximately log-normal, and that

there is a lot of heterogeneity in eit, pit, and xi1t.

Estimation of Pseudo-Demand

Under Assumption 1.9, there exists τ ∈ (0, 1) for which the conditional quantile Qxi1t(τ |wit) is a pseudo-

demand function x∗θ,1(·). In this section, I investigate (i) whether this assumption holds in the NHCP, and

(ii) the quantile(s) at which it holds (when it holds). I look for ridges and valleys in various conditional
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Figure 1.22. Estimates of conditional quantiles of food consumption given τ = 0.25. On the left, I plot
the estimate for the full NHCP sample. On the right, I plot the estimate for the subset of the NHCP
containing poorer households with more members and younger female heads.

quantiles using the spline approach, and perform this analysis on (i) the full NHCP sample, and (ii) a

subset of the NHCP containing poorer households with more members and younger female heads.

For each sample, I estimate six conditional quantiles of consumption: τ = 0.10, 0.25, 0.50, 0.75, 0.90.

For brevity, I will only plot the pseudo-demand functions for τ = 0.25 and τ = 0.50 in this section. The

remaining plots are placed in Appendix 1.F. This appendix also contains the details of the subset of the

NHCP described above, and the tuning parameters used for estimation.

Figures 1.22 and 1.23 display the estimated conditional quantiles of consumption for τ = 0.25 (first

quartile) and τ = 0.50 (median), respectively. In each figure, the estimate on the left uses the full NHCP

sample, and the estimate on the right uses the subset of the NHCP containing poorer households with

more members and younger female heads. In Figure 1.22, the estimate that uses the full sample has a

small “wrinkle” when expenditure e is between 3 and 4 in normalized dollars, but this “wrinkle” does

not seem to define a very recognizable ridge or valley. However, the estimate that uses the subset of

the NHCP has an extremely pronounced ridge and valley in this location. We also see a similar ridge

and valley in this subset of the NHCP in Figure 1.23 when expenditure e is between 3.5 and 4.5 in

normalized dollars. These results suggest the existence of fraud in this subset of the NHCP. None of the

other conditional quantiles in either sample have a very pronounced ridge or valley (see Appendix 1.F).
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Figure 1.23. Estimates of conditional quantiles of food consumption given τ = 0.50. On the left, I plot
the estimate for the full NHCP sample. On the right, I plot the estimate for the subset of the NHCP
containing poorer households with more members and younger female heads.

Structural Estimates

The estimates of pseudo-demand on the right of Figures 1.22 and 1.23 can be used to bound the policy

b(·), discount π, and demand for fraud fθ(·). In this section, I will apply the steps described in Section

1.3.3 to the estimate associated with the subset of the NHCP consisting of poorer households with more

members and younger female heads given τ = 0.25.

To identify the regimes, I apply the ridge and valley estimation procedure described in Section 1.4.3.

The result of this procedure is displayed in Figure 1.24. In this figure, we see that the order of the ridge

and valley is correct at prices that are smaller than 3.25. This result follows from the fact that the valley

is not as recognizable at large prices. For simplicity, I use the following estimates for the sets associated

with the regimes:

Ŵ ∗θ,1 = [4.47, 7]× [1.05, 3.25], Ŵ ∗θ,2 = [4.21, 4.47]× [1.05, 3.25], Ŵ ∗θ,3 = [0, 4.21]× [1.05, 3.25], (1.5.1)

avoiding extremal values of the price p. Since these estimated sets are rectangles, we immediately obtain:

ê`(p) = inf{e > 0 : (e, p) ∈ Ŵ ∗θ,2} = 4.21 and êh(p) = sup{e > 0 : (e, p) ∈ Ŵ ∗θ,2} = 4.47, (1.5.2)

for all 1.05 ≤ p ≤ 3.25.

The next step involves estimating b∗θ(e`(p), p) and b∗θ(eh(p), p), and then using the result to estimate
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Figure 1.24. Estimates of the ridge and valley for the conditional quantile of food consumption given
τ = 0.25. The green curve is the estimated ridge and the blue curve is the estimated valley.

the bounds for b(·) and the upper bound π∗h for the discount π. We have the following natural estimators:

b̂∗θ(ê`(p), p) = px̂∗θ,1(ê`(p), p) and b̂∗θ(êh(p), p) = px̂∗θ,1(êh(p), p), (1.5.3)

for all 1.05 ≤ p ≤ 3.25. The resulting estimates are illustrated on the left of Figure 1.25. In this figure,

we see that these estimates are increasing in the price, and that the estimate associated with the smaller

level of expenditure is mostly above the estimate associated with the higher level of expenditure, as

expected. The bounds for b(·) implied by these estimates are illustrated on the right of Figure 1.25.

These bounds have the expected form. Moreover, we obtain:

π̂∗h = inf
w∈Ŵ∗θ,3

x̂∗θ,2(w)

b̂∗θ(ê`(p), p)− px̂∗θ,1(w)
= inf
w∈Ŵ∗θ,3

e− px̂∗θ,1(w)

px̂∗θ,1(ê`(p), p)− px̂∗θ,1(w)
' 0.1145. (1.5.4)

This upper bound is less than one, implying that we can also bound demand for fraud. This upper

bound is much lower than the informal claim that the discount π is often around 0.50 (see Government

Accountability Office, 2006).

It is left to bound demand for fraud. First, I consider pseudo-demand for fraud f∗θ (·), then I consider

demand for fraud fθ(·) as a function of z. The estimated bounds for pseudo-demand for fraud have the

form in Section 1.3.3:

b̂∗θ(ê`(p), p)− px̂∗θ,1(w) ≤ f∗θ (w) ≤ b̂∗θ(ê`(p), p) +
|ê`(p)− e|

1− π̂∗h
− px̂∗θ,1(w), (1.5.5)
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Figure 1.25. On the left, the blue line is the estimate of b∗θ(e`(p), p), and the green line is the estimate
of b∗θ(e`(p), p). On the right, the blue line is the estimate of the lower bound for b(·) given p = 2, the
green line is the estimate of the upper bound for b(·) given p = 2, and the red line is the estimate of b(·)
in the second regime given p = 2.

for all w ∈ Ŵ ∗θ,3. These bounds are illustrated in Figure 1.26. In this figure, we see that both bounds

are informative, and that they converge to zero at the boundary of the third regime. Now, to estimate

the bounds for fθ(·), we first need to estimate λ`(z) and λh(z), as defined in Section 1.3.3. I use the

following plug-in estimators:

λ̂`(z) = {e : x̂θ,1(w) = y} and λ̂h(z) = (1− π̂∗h)
[
y − x̂∗θ,2(ê`(p), p)

]
+ ê`(p), (1.5.6)

in the third regime. These functions bound the expenditure function eθ(·) in the third regime. I illustrate

their estimates on the left of Figure 1.27. These estimates are strictly increasing, meet at the boundary

of the third regime, and cross at the boundary of the first regime, as expected. Now, the bounds for

fθ(·) can be estimated in the following way:

b̂∗θ(ê`(p), p)− px̂∗θ,1(λ̂h(z), p) ≤ fθ(z) ≤ b̂∗θ(ê`(p), p) +
ê`(p)− λ̂`(z)

1− π̂∗h
− px̂∗θ,1(λ̂`(z), p), (1.5.7)

in the third regime. The estimated bounds are illustrated on the right of Figure 1.27. Once again, these

estimated bounds have the form that we expect: They are strictly decreasing in income and they meet

at the boundary of the third regime. These estimators for the pseudo-fraud function f∗θ (·) and demand

for fraud fθ(·) can be used to inform policy: For example, they can be used to (i) determine whether

these bounds are changing over time, (ii) rule out fraud for households with sufficiently high levels of

income or expenditure, or (iii) bound the effect of a change in policy on fraud.

Remark 1.12. If we have the interpretation that this first quartile of food consumption Qxi1t(0.25|wit)
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Figure 1.26. The estimated bounds for the pseudo-fraud function f∗θ (·) given p = 2. The blue line is the
lower bound and the green line is the upper bound.

coincides with the pseudo-demand function x∗θ,1(·, α0.25) associated with the first quartile α0.25 of the

distribution of heterogeneity α in the population, and (standard) demand for food is strictly increasing in

α (recall the discussion in Example 1.9), then the results in this application can be literally interpreted as

the bounds associated with this individual household, in the event that this household chooses to commit

fraud when given the incentive. In this setting, we also know that demand for fraud fθ(·) is monotonic

in heterogeneity α, implying that the estimated bounds in this section imply a larger amount of fraud

than 75 percent of households, and a smaller amount of fraud than 25 percent of households. With this

interpretation, we can produce precise answers to the policy questions described above. Without this

interpretation, it would be difficult to interpret the bounds on fraud in this section in a meaningful way,

but the bounds on b(·) and π would still be valid because these objects are invariant across households.

1.6 Conclusion

In this chapter, I identify the necessary implications of food stamp fraud and non-parametrically estimate

the extent of food stamp fraud in the United States. I find approximately $1 billion of food stamp fraud

in 2017, which is consistent with the estimate in Willey et al. (2017). I also identify and estimate several

structural objects of interest—for example, (i) demand for goods (in the presence of fraud), (ii) bounds

on food stamp amounts, (iii) the expected cost of an illegal exhange to the household, and (iv) bounds on

demand for fraud. These objects have never been estimated before, and can be used for policy analysis.

Food stamp fraud is a concern because it redirects aid from low-income households to retailers. The
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Figure 1.27. On the left, I illustrate the estimated values for λ`(·) (blue) and λh(·) (green) given p = 2.
On the right, I illustrate the bounds for demand for fraud fθ(·) given p = 2, where the blue line is the
lower bound and the green line is the upper bound.

Food and Nutrition Service (FNS) is responsible for detecting and analyzing food stamp fraud, but the

current methodology is expensive and limited. I construct a cheap alternative methodology that provides

additional information. This chapter is the first analysis in economics that attempts to solve this critical

real-world problem.

1.A Benefit Programs

The Supplemental Nutrition Assistance Program (or SNAP), formerly known as the Food Stamp Pro-

gram, is a federal aid program in the United States intended to help low-income households buy food.

In the 2017 fiscal year, SNAP provided $63.6 billion in benefits to 42 million people (see Table 1.6).

This appendix describes the terms and conditions of SNAP, as described in the Food Stamp Act of

1977 and the Food and Nutrition Act of 2008,15 describes how benefit fraud is detected and analyzed

in SNAP, then compares this program with the Special Supplemental Nutrition Program for Women

Infants, and Children (or WIC). I focus on SNAP, rather than WIC—while these programs have similar

characteristics, SNAP is a larger program with more existing information on fraud. In 2008, the Food

and Nutrition Act of 2008 replaced the Food Stamp Act of 1977. For each term or condition, I cite the

corresponding section in the Food and Nutrition Act of 2008. I cite the Food Stamp Act of 1977 only if

there is a difference between the Food Stamp Act of 1977 and the Food and Nutrition Act of 2008 that

affects the term or condition of interest.

15In this appendix, I do not describe the Food Stamp Act of 1964, or any of the previous versions of the Food Stamp
Program. Before the Food Stamp Act of 1977, households were required to buy food stamps. This aspect was eliminated
in 1979.
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Table 1.6. SNAP summary by fiscal year (Food and Nutrition Service, 2018c).

Average Number Average Benefit Total Benefits Total Costs
of Participants Per Person (in millions (in millions

Year (in thousands) (in dollars) of dollars) of dollars)
2003 21,250 83.94 21,404.28 23,816.28
2004 23,811 86.16 24,618.89 27,099.03
2005 25,628 92.89 28,567.88 31,072.01
2006 26,549 94.75 30,187.35 32,903.06
2007 26,316 96.18 30,373.27 33,173.52
2008 28,223 102.19 34,608.40 37,639.64
2009 33,490 125.31 50,359.92 53,619.92
2010 40,302 133.79 64,702.16 68,283.47
2011 44,709 133.85 71,810.92 75,686.54
2012 46,609 133.41 74,619.34 78,411.10
2013 47,636 133.07 76,066.32 79,859.03
2014 46,664 125.01 69,998.84 74,060.33
2015 45,767 126.81 69,645.14 73,946.67
2016 44,219 125.40 66,539.35 70,912.44
2017 42,123 125.83 63,603.67 68,070.68

1.A.1 Household Definition

A “household” is defined as: (i) an individual that lives alone, (ii) an individual that lives with others

but purchases and prepares food separately, or (iii) a group of individuals that live together and buy

and prepare food together (Food and Nutrition Act of 2008, Section 3(m)(1)).

The following rules apply: (i) If an individual lives with her spouse, then she must be included in

the same household as her spouse, (ii) if a child is under the age of 18 and living with (and under the

“parental control” of) an adult, then she must be included in the same household as this adult, even if

this adult is not her parent, (iii) if a child is under the age of 22 and living with a parent, then she must

be included in the same household as the parent, and (iv) children cannot be assigned to more than one

household—in situations with joint custody, children will be grouped with the parent that provides the

most care (Food and Nutrition Act of 2008, Section 3(m)(2)).

There exist some exceptions: (i) If an individual is at least 60 years old and disabled, unable to buy

and prepare food because of her disability, and the cumulative gross income of the other residents of her

living situation (with the exception of her spouse) is no larger than 165 percent of the poverty guideline

for a household of its size, then she is included in a household that is separate from the other residents of

her living situation, with the exception of her spouse (Food and Nutrition Act of 2008, Section 3(m)(3)),

(ii) if an individual is living in federally subsidized housing because she is elderly, disabled, or blind,

then she is included in a household that is separate from the other residents of her living situation (Food

and Nutrition Act of 2008, Section 3(m)(5)(A)), (iii) if an individual is elderly or disabled and living

in a group living arrangement with less than 17 residents, then she is included in a household that is

separate from the other residents of her group living arrangement (Food and Nutrition Act of 2008,
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Section 3(m)(5)(B)), (iv) if an individual is living in a shelter for battered women, then she is included

in a household that is separate from the other residents of the shelter (Food and Nutrition Act of 2008,

Section 3(m)(5)(C)), (v) if an individual is a resident of a shelter for individuals without a permanent

dwelling or mailing address, then she is included in a household that is separate from the other residents

of the shelter (Food and Nutrition Act of 2008, Section 3(m)(5)(D)), and (vi) if an individual is a resident

of an institution intended to facilitate the recovery from a drug or alcohol addiction, then she is included

in a household that is separate from the other residents of the institution, with the exception of her

children (Food and Nutrition Act of 2008, Section 3(m)(5)(E)).

1.A.2 Household Eligibility

A household is eligible to receive benefits, only if it satisfies the criteria described in Sections 5 and 6

of the Food and Nutrition Act of 2008: (i) Every member of the household must be a citizen or lawful

non-citizen of the United States (Food and Nutrition Act of 2008, Section 6(f)), (ii) every member of the

household over the age of 15 and under the age of 60 must accept and maintain employment (Food and

Nutrition Act of 2008, Section 6(d)(1)) unless she is (a) complying with work-registration requirements,

(b) responsible for the care of a child under the age of 6, or responsible for the care of an individual

that is unable to care for herself, (c) enrolled in school with at least half of a full course-load, or (d)

in a program intended to facilitate the recovery from a drug or alcohol addiction (Food and Nutrition

Act of 2008, Section 6(d)(2)), (iii) every member of the household that is enrolled in a school of higher

education with at least half of a full course-load must be (a) under the age of 18 or over the age of 50,

(b) not physically or mentally fit, (c) assigned to attend school for employment or training purposes, (d)

employed for at least 20 hours per week, (e) responsible for the care of a child, or (f) receiving benefits

from an admissible State program (Food and Nutrition Act of 2008, Section 6(e)), (iv) no member of

the household can be fleeing to avoid prosecution or violating the conditions of a parole (Food and

Nutrition Act of 2008, Section 6(k)), or convicted of any of the offenses in Section 6(r)(1) of the Food

and Nutrition Act of 2008, and (v) every member of the household must cooperate with the State and

provide all materials relevant for determining eligiblity (Food and Nutrition Act of 2008, Section 6(c)).

To be eligible, a household must also satisfy financial requirements that suggest that the members of

the household cannot afford a nutritious diet (Food and Nutrition Act of 2008, Section 5(a)). In general,

(i) household income, less admissible exclusions and deductions, must be less than the poverty guideline

for a household of its size (Food and Nutrition Act of 2008, Section 5(c)(1)), (ii) if the household does

not have an elderly or disabled member, then its income, less admissible exclusions, must be no larger

than 130 percent of the poverty guideline for a household of the appropriate size (Food and Nutrition Act

of 2008, Section 5(c)(2)), and (iii) the value of its resources—for example, cash, savings, and personal

vehicles—does not exceed a threshold defined by the FNS (Food and Nutrition Act of 2008, Section 5(g)).

The Food Stamp Act of 1977 defined this threshold to be $2,000 for a household without an elderly or
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Table 1.7. Resource maximums in dollars (Food and Nutrition Service, 2006-2017, 2017a).

Household Type
Year No Elderly/Disabled Elderly/Disabled

1977-2010 2,000 3,000
2011-2013 2,000 3,250
2014-2016 2,250 3,250

2017 2,250 3,500

disabled member, and $3,000 for a household with an elderly or disabled member (Food Stamp Act

of 1977, Section 5(g)(1)). The Food and Nutrition Act of 2008 added a condition that requires this

maximum to be updated each year to account for changes in prices, as measured by the Consumer Price

Index (CPI-U) in June, then rounded down to the nearest $250 increment (Food and Nutrition Act of

2008, Section 5(g)(1)(A)). Table 1.7 provides resource maximums from 2004 to 2017.

1.A.3 Poverty Guidelines

The FNS uses poverty guidelines, updated annually in the Federal Register by the U.S. Department

of Health and Human Services under the authority of the Community Services Block Grant Act (Food

and Nutrition Act of 2008, Section 5(c)(1)). These guidelines “do not make a distinction between farm

and non-farm families, or between aged and non-aged units” (Health and Human Services Department,

2017). These guidelines are updated each year to account for changes in prices, as measured by the

Consumer Price Index (CPI-U) (Health and Human Services Department, 2017). This change goes in

effect, for the purpose of determining eligibility, on October 1 each year (Food and Nutrition Act of 2008,

Section 5(c)). Table 1.8 provides the poverty guidelines for monthly income, in effect after October 1,

for the 48 contiguous States and the District of Columbia for 2003 to 2017. There was no change in

2010 for legislative reasons, as described in Section 1012 of the Department of Defense Appropriations

Act. Alaska and Hawaii have separate guidelines. Guidelines are not defined for other jurisdictions.

1.A.4 Admissible Exclusions and Deductions

According to the Food and Nutrition Act of 2008, the calculation of monthly income, for the purpose

of determining eligibility, must include all forms of revenue with the exception of: (i) non-monetary

benefits, (ii) unanticipated income less than or equal to $30 per quarter during the period in which

benefits are received, (iii) loans, (iv) educational grants and scholarships, (v) payments, reimbursements

and allowances (as described in Sections 5(d)(5), 5(d)(11) and 6(d)(I) of the Food and Nutrition Act

of 2008), (vi) monetary benefits received for the care of an individual (such as child support) when

this individual is not a member of the household, (vii) income earned by a member of the household

under the age of 18 when this member is enrolled in elementary or secondary school, (viii) non-recurring

lump-sum payments (such as tax refunds) less than or equal to $300 per quarter, (ix) income associated
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Table 1.8. Poverty guidelines in dollars for the 48 contiguous States and the District of Columbia by
household size and year (Food and Nutrition Service, 2018a).

Household Size
Year 1 2 3 4 5 6 7 8
2003 749 1,010 1,272 1,534 1,795 2,057 2,319 2,580
2004 776 1,041 1,306 1,571 1,836 2,101 2,366 2,631
2005 798 1,070 1,341 1,613 1,885 2,156 2,428 2,700
2006 817 1,100 1,384 1,667 1,950 2,234 2,517 2,800
2007 851 1,141 1,431 1,721 2,011 2,301 2,591 2,881
2008 867 1,167 1,467 1,767 2,067 2,367 2,667 2,967
2009 903 1,215 1,526 1,838 2,150 2,461 2,773 3,085
2010 903 1,215 1,526 1,838 2,150 2,461 2,773 3,085
2011 908 1,226 1,545 1,863 2,181 2,500 2,818 3,136
2012 931 1,261 1,591 1,921 2,251 2,581 2,911 3,241
2013 958 1,293 1,628 1,963 2,298 2,633 2,968 3,303
2014 973 1,311 1,650 1,988 2,326 2,664 3,003 3,341
2015 981 1,328 1,675 2,021 2,368 2,715 3,061 3,408
2016 990 1,335 1,680 2,025 2,370 2,715 3,061 3,408
2017 1,005 1,354 1,702 2,050 2,399 2,747 3,095 3,444

with changes in the cost-of-living, (x) advanced payments for earned income credits, (xi) self-support

payments, (xii) admissible medical payments, and (xiii) payments for service in a combat zone (Food

and Nutrition Act of 2008, Section 5(d)).

Admissible household income deductions, for the purpose of determining eligibility with respect to

the requirement in the second paragraph of Appendix 1.A.2, include: (i) a standard income deduction

defined as the maximum of (a) 8.31 percent of the poverty guideline for a household of the appropriate

size, if this value is less than 8.31 percent of the poverty guideline for a household with 6 members, and

8.31 percent of the poverty guideline for a household with 6 members, otherwise, and (b) a minimum

defined by the FNS (which started at $134 in 1977, was changed to $144 in 2008, and has been updated

each year after 2008 to account for changes in the prices of commodities, as measured by the Consumer

Price Index (CPI-U); see Table 1.9 for standard income deductions, in effect after October 1, for the 48

contiguous States and the District of Columbia from 2003 to 2017), (ii) 20 percent of household income,

less admissible exclusions, (iii) the cost of dependent care if needed for work or education, (iv) child

support payments, (v) medical expenses less than $35 per month incurred by an elderly or disabled

member of the household, and (vi) excess shelter costs (Food and Nutrition Act of 2008, Section 5(e);

Food Stamp Act of 1977, Section 5(e)). Excess shelter costs are defined as the amount paid for housing

(including, but not limited to, rent, mortgage, property taxes, and a standard utility allowance) less

50 percent of household income, after subtracting admissible exclusions and deductions (i) through (v)

of the current paragraph, so long as this value is positive and below a maximum defined by the FNS

(Food and Nutrition Act of 2008, Section 5(e)(6); Food and Nutrition Service, 2018a). This maximum

started at $247 in 1996. It was, then, increased four times in the period beginning in 1997, and ending in
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Table 1.9. Standard income deductions in dollars for the 48 contiguous States and the District of
Columbia (Food and Nutrition Service, 2018a).

Household Size
Year 1 2 3 4 5 6 7 8
2003 134 134 134 134 149 171 171 171
2004 134 134 134 134 153 175 175 175
2005 134 134 134 134 157 175 179 179
2006 134 134 134 134 162 186 186 186
2007 134 134 134 143 167 191 191 191
2008 144 144 144 147 172 197 197 197
2009 141 141 141 153 179 205 205 205
2010 142 142 142 153 179 205 205 205
2011 147 147 147 155 181 208 208 208
2012 149 149 149 160 187 214 214 214
2013 152 152 152 163 191 219 219 219
2014 155 155 155 165 193 221 221 221
2015 155 155 155 168 197 226 226 226
2016 155 155 155 168 197 226 226 226
2017 160 160 160 170 199 228 228 228

Table 1.10. Shelter cost maximums in dollars for the 48 contiguous States and the District of Columbia
(Food and Nutrition Service, 2006-2017, 2017a).

Year Maximum Year Maximum
2003 378 2011 459
2004 388 2012 469
2005 400 2013 478
2006 417 2014 490
2007 431 2015 504
2008 446 2016 517
2009 459 2017 535
2010 458

2001, for a maximum of $340 in 2001. Since 2001, it has been updated each year to account for changes

in prices, as measured by the CPI-U (Food and Nutrition Act of 2008, Section 5(e)(6)(B)). Table 1.10

provides maximums, in effect after October 1, for the 48 contiguous States and the District of Columbia

from 2003 to 2017.

1.A.5 Issuance and Use of Benefits

Eligible households are given an Electronic Benefit Transfer (EBT) card (Food and Nutrition Act of 2008,

Section 7(a)).16 EBT cards can be used like debit cards at eligible retailers to purchase food approved

by the U.S. Department of Agriculture under the FNS (Food and Nutrition Act of 2008, Section 7(b)).

Benefits are transferred to a given household’s EBT card once a month, “on or about the same date each

month” (Code of Federal Regulations, Title 7, Section 274.2(d)). The date of this transfer, for a given

16EBT cards replaced denominated stamps in 2004 (Food and Nutrition Service, 2017b).
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household, depends on a State-dependent rule for “staggering” transfers of benefits (Food and Nutrition

Act of 2008, Section 7(g)(1))—for example, in Arizona, a household is transferred benefits on the first

of each month if, and only if, the first letter of the last name of the applicant begins with the letter “A”

or “B” (Food and Nutrition Service, 2018b). If a household does not use its benefits for an entire year,

its benefits will be permanently removed from its EBT card (Food and Nutrition Act of 2008, Section

7(h)(12)(C)). If a household requires a replacement EBT card (possibly because of loss or damage), the

State must provide a replacement, unless the household fails to provide an admissible explanation, as

described in Section 7(h)(8)(B) of the Food and Nutrition Act of 2008. The State is allowed to charge a

fee, in the form of a reduction in benefits, for replacing an EBT card (Food and Nutrition Act of 2008,

Section 7(h)(8)(A)).

1.A.6 Amount of Benefits

The maximum benefit that a household can receive depends on the size of the household: This maximum

is intended to encompass the cost of a “thrifty food plan” for a household of its size (Food and Nutrition

Act of 2008, Sections 8(a) and 4(u)(1)), accounting for economies of scale (Food and Nutrition Act of

2008, Section 4(u)(2)). This maximum has been updated each year since 1995 to account for changes in

the cost of this diet (Food and Nutrition Act of 2008, Sections 4(u)(3) and 4(u)(4)). Table 1.11 provides

the maximum monthly benefits, in effect after October 1, for the 48 contiguous States and the District

of Columbia from 2003 to 2017. The amount of benefits that a given household receives is defined as

the maximum benefit for a household of its size less 30 percent of the household’s net income—that is,

household income less admissible exclusions and deductions, as described in Appendix 1.A.4 (Food and

Nutrition Act of 2008, Section 8(a)).

1.A.7 Example

Consider a two-member household in 2017 with $1,160 in employment income, $230 in social security

income, $30 in medical expenses (incurred by an elderly member) and $700 in shelter costs, each month.

The household’s income, less admissible exclusions, is given by the sum of employment income and social

security income:

$1, 160 + $230 = $1, 390. (1.A.1)

By deducting 20 percent of employment income, the standard deduction of $160 for a household with

two members in 2017 (see Table 1.9) and medical expenses, we obtain:

$1, 390− $200− $160− $30 = $1, 000. (1.A.2)
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Table 1.11. Maximum benefit amounts in dollars for the 48 contiguous States and the District of
Columbia (Food and Nutrition Service, 2018a).

Household Size
Year 1 2 3 4 5 6 7 8
2003 141 259 371 471 560 672 743 849
2004 149 274 393 499 592 711 786 898
2005 152 278 399 506 601 722 798 912
2006 155 284 408 518 615 738 816 932
2007 162 298 426 542 643 772 853 975
2008 176 323 463 588 698 838 926 1,058
2009 200 367 526 668 793 952 1,052 1,202
2010 200 367 526 668 793 952 1,052 1,202
2011 200 367 526 668 793 952 1,052 1,202
2012 200 367 526 668 793 952 1,052 1,202
2013 189 347 497 632 750 900 995 1,137
2014 194 357 511 649 771 925 1,022 1,169
2015 194 357 511 649 771 925 1,022 1,169
2016 194 357 511 649 771 925 1,022 1,169
2017 192 352 504 640 760 913 1,009 1,153

This amount is the household’s income, less admissible exclusions and deductions, with the exception

of excess shelter costs. Applying the definition in deduction (vi) of the second paragraph in Appendix

1.A.4, we obtain an excess shelter costs equal to:

$700− $1, 000

2
= $200. (1.A.3)

It is worth pointing out that this value is, indeed, less than the maximum shelter cost deduction of

$535 for 2017 (see Table 1.10). The household’s income, less admissible ex- clusions and deductions, is,

therefore:

$1, 000− $200 = $800. (1.A.4)

The household satisfies financial requirement (i) in the second paragraph of Appendix 1.A.2 because the

household’s income, less admissible exclusions and deductions, is $800, which is less than $1,354, the

poverty guideline for a household with two members in 2017 (see Table 1.8). The household does not

need to satisfy financial requirement (ii) in the second paragraph of Appendix 1.A.2 because it has an

elderly member. If the household is determined to be eligible to receive benefits with respect to the

conditions in the first paragraph of Appendix 1.A.2, it will receive an amount of $112 in benefits each

month because:

$352− $240 = $112, (1.A.5)

where $352 is the maximum benefit for a two-person household in 2017 (see Table 1.11), and $240 is 30

percent of $800, the household’s net income, computed above in (1.A.4).
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1.A.8 Food and Non-Food

Households can use benefits to buy goods classified as food (Food and Nutrition Act of 2008, Section

3(k)(1))—for example, breads, cereals, fruits, vegetables, meats, and dairy products (Food and Nutrition

Service, 2018d). Households can also use benefits to buy seeds or plants that can produce fruits or

vegetables for consumption (Food and Nutrition Act of 2008, Section 3(k)(2)). Households cannot

use benefits to buy alcohol or tobacco products (Food and Nutrition Act of 2008, Section 3(k)(1))

such as beer, wine, liquor, or cigarettes (Food and Nutrition Service, 2018d). Pet foods, soaps, paper

products, household supplies, vitamins, and medicines are also excluded (Food and Nutrition Service,

2018d). Households cannot use benefits to buy “hot foods or hot food products ready for immediate

consumption” (Food and Nutrition Act of 2008, Section 3(k)(1)) unless the product is (i) provided to

an elderly member of the household (or her spouse) by a centre for senior citizens (Food and Nutrition

Act of 2008, Section 3(k)(3)), an approved organization (Food and Nutrition Act of 2008, Section

3(k)(4)), or a living arrangement, as described in Appendix 1.A.1 (Food and Nutrition Act of 2008,

Section 3(k)(7)), (ii) provided by an institution intended to facilitate the recovery from a drug or alcohol

addiction (Food and Nutrition Act of 2008, Section 3(k)(5)) or a shelter for battered women (Food

and Nutrition Act of 2008, Section 3(k)(8)), or (iii) provided to a member of the household without a

permanent dwelling or mailing address by an approved establishment (Food and Nutrition Act of 2008,

Section 3(k)(9)). In Alaska, remote households can also use benefits to buy “equipment for procuring

food by hunting and fishing, such as nets, hooks, rods, harpoons, and knives (but not equipment for

purposes of transportation, clothing, or shelter, and not firearms, ammunition, and explosives)” (Food

and Nutrition Act of 2008, Section 3(k)(6)).

1.A.9 Eligible Retailers

Retailers must be approved by the FNS to be eligible to accept benefits from households as payment for

food, as described in Appendix 1.A.8 (Food and Nutrition Act of 2008, Section 9(a)(1)). Approval is

based on the location of the retailer, the nature of the business conducted by the retailer, the expected

number of benefit transactions by the retailer if it is approved, and the reputation of the retailer (Food

and Nutrition Act of 2008, Section 9(a)(1)). Prospective retailers must submit an application and submit

to a visit for the purpose of determining eligibility (Food and Nutrition Act of 2008, Section 9(a)(1)).

To be eligible, a retailer must (i) always carry a variety of foods, such as a grocery store, or food must

account for more than half of its sales, such as a butcher (Food and Nutrition Act of 2008, Sections

3(o)(1) and 9(a)(1)), (ii) provide food, as described in conditions (i) through (iii) in Appendix 1.A.8

(Food and Nutrition Act of 2008, Sections 3(o)(1) and 9(a)(2)), or (iii) provide hunting and fishing

equipment, as described at the end of Appendix 1.A.8 (Food and Nutrition Act of 2008, Sections 3(o)(1)

and 9(a)(3)). If a retailer is approved, it is responsible for acquiring the necessary point-of-sale equipment
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(Food and Nutrition Act of 2008, Sections 7(f)(2)).

1.A.10 Benefit Fraud Definition

The U.S. Code of Federal Regulations defines benefit fraud (also known as benefit trafficking) to mean:

“(1) The buying, selling, stealing, or otherwise effecting an exchange of SNAP benefits issued and

accessed via Electronic Benefit Transfer (EBT) cards, card numbers and personal identification numbers

(PINs), or by manual voucher and signature, for cash or consideration other than eligible food, either

directly, indirectly, in complicity or collusion with others, or acting alone; (2) The exchange of firearms,

ammunition, explosives, or controlled substances, as defined in section 802 of title 21, United States

Code, for SNAP benefits; (3) Purchasing a product with SNAP benefits that has a container requiring a

return deposit with the intent of obtaining cash by discarding the product and returning the container for

the deposit amount, intentionally discarding the product, and intentionally returning the container for

the deposit amount; (4) Purchasing a product with SNAP benefits with the intent of obtaining cash or

consideration other than eligible food by reselling the product, and subsequently intentionally reselling

the product purchased with SNAP benefits in exchange for cash or consideration other than eligible

food; or (5) Intentionally purchasing products originally purchased with SNAP benefits in exchange for

cash or consideration other than eligible food. (6) Attempting to buy, sell, steal, or otherwise affect

an exchange of SNAP benefits issued and accessed via Electronic Benefit Transfer (EBT) cards, card

numbers and personal identification numbers (PINs), or by manual voucher and signatures, for cash or

consideration other than eligible food, either directly, indirectly, in complicity or collusion with others,

or acting alone” (Code of Federal Regulations, Title 7, Section 271.2).

1.A.11 Detection of Benefit Fraud

Benefit fraud is usually detected using (i) undercover investigations, (ii) social media, (iii) tips and re-

ferrals, and (iv) EBT transactions (Aussenberg, 2018). The first method involves sending undercover

investigators to retailers and having these investigators attempt to exchange benefits for cash; the sec-

ond method involves monitoring posts on social media to identify households attempting to exchange

benefits online; the third method involves setting up and monitoring information hotlines; the fourth

method involves analyzing EBT transactions to identify suspicious behaviour, indicative of benefit fraud.

Unfortunately, the first method is costly, the second method provides limited information about the per-

petrator, making cases difficult to pursue, and the third method is “largely unsuccessful at yielding

adequate evidence of wrongdoing” (Miller et al., 2017). The fourth method is, therefore, the most sen-

sible method for detecting benefit fraud—as a result, over 80% of (identified) benefit fraud is detected

using EBT transactions (Aussenberg, 2018). In practice, transactions are analyzed with respect to a set

of indicators—for example, in Tennessee, some indicators include:
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(i) Transactions between 11:00PM and 5:00AM

(ii) Large even-dollar transactions, ending in “.00”

(iii) Large transactions that leave a low balance

(iv) Large transactions at small retailers

(v) Many transactions within 24 hours.

For a complete description, see Miller et al. (2017). These indicators have at least four shortcomings: (i)

none of these indicators are necessary or sufficient for the existence of benefit fraud, (ii) these indicators

are unable to detect certain types of benefit fraud (for example, a household may choose to exchange

its benefits with a friend, or lend its EBT card to a retailer in exchange for cash, allowing this retailer

to purchase food commodities at another retailer, a process known as indirect trafficking), and (iii) it is

easy for a household (or a retailer) to modify its behaviour to avoid satisfying these indicators. In 2006,

it was noted that, the FNS “has made good progress in its use of EBT transaction data [but it should]

begin to formulate more sophisticated analyses” (Government Accountability Office, 2006). While the

FNS has made progress toward this objective, this paper uses economic tools to also solve the issues

described above.

1.A.12 Analysis of Benefit Fraud

The FNS is responsible for periodically analyzing the extent of benefit fraud in SNAP. In this section,

I describe the methodology used by the FNS in its most recent report on benefit fraud (see Willey

et al., 2017, for this report, and Aussenberg, 2018, for a broader discussion of fraud in SNAP). The

objective of this report is to estimate (i) the total amount of fraud, (ii) the proportion of benefits

illegally exchanged for cash, and (iii) the proportion of eligible retailers that commit fraud. The authors

estimate $1.1 billion in fraud per year, accounting for approximately 1.5 percent of all benefits, exchanged

at approximately 11.8 percent of all eligible retailers. Most fraud occurred at “small” retailers, in urban

areas with higher levels of poverty. According to this report, $1.1 billion accounts for an increase of $836

million in benefit fraud since 2005, or equivalently, a 0.5 percentage point increase in the proportion of

benefits illegally exchanged for cash. These estimates are constructed using data from covert investi-

gations into suspicious retailers, and information about retailers with suspicious EBT transactions. The

authors estimate the amount of fraud by computing the proportion of investigations that found fraud,

and applying a post-stratification raking approach. Post-stratification is used because every observation

is associated with a retailer that has exhibited suspicious behaviour, and suspicious behaviour is thought

to be highly positively correlated with fraudulent behaviour. Post-stratification is used to correct for the

bias caused by the endogeneity of the sample. Loosely speaking, the approach adopted in this report

weights observations to match the observable characteristics of the sample with the same characteristics
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in the population of eligible retailers. For example, if supermarkets are under-represented in the sample,

then, all else equal, supermarkets will be assigned larger weights. The following characteristics were used:

(i) Size and type of the retailer

(ii) Private or public ownership of the business

(iii) Amount of poverty in the area

(iv) Urban or rural location

(v) Amount of benefits redeemed at retailers in the area.

See Appendix C in Willey et al. (2017) for a detailed description of the post-stratification procedure; see

Appendix D in Willey et al. (2017) for precise definitions of the characteristics used. The authors high-

light three limitations of this analysis: (i) Post-stratification can reduce bias, but “it cannot eliminate it”

(Willey et al., 2017, Section 2.2). Indeed, this approach can only eliminate bias if the chosen characteris-

tics perfectly explain the difference in the propensity to commit fraud in the sample and the population

of eligible retailers. (ii) The approach is sensitive to the precise definitions of the characteristics. (iii)

There is no information about the proportion of fraudulent SNAP transactions at specific retailers. The

authors assume that, if a small retailer commits fraud, then 90 percent of its SNAP transactions are

fraudulent, and that, if a large retailer commits fraud, then 40 percent of its SNAP transactions are

fraudulent (see footnote 8 on page 6 of Willey et al., 2017). Their results rely on this assumption. There

is an additional issue with the approach in this report: It is unable to detect certain types of benefit

fraud. In particular, it can only detect types of benefit fraud that require a retailer—it cannot detect

the other types, as described in Section 1.2.2.

1.A.13 Women, Infants, and Children (WIC)

The Special Supplemental Nutrition Program for Women, Infants, and Children (or WIC) is a federal

aid program in the U.S. intended to help low-income women, infants, and children buy food. In 1972,

WIC was established in an amendment to the Child Nutrition Act of 1966. Over the years, WIC has

been amended several times. In this section, I describe WIC, in its current form, after the Healthy

Hunger-Free Kids Act of 2010, and the major differences with SNAP.17

WIC is smaller than SNAP: In the 2017 fiscal year, WIC provided $5.7 billion in benefits to 7.2

million participants (see Table 1.12). To be eligible for WIC, participants must be at nutritional risk

(as established by a professional authority) and pregnant, post-partum, or breastfeeding, or under the

age of five. The financial requirements for WIC are not as strict as those for SNAP—in general, income

must be below 185 percent of the poverty guideline for a household of its size (see Table 1.8), and if an

17In this appendix, I do not describe any of the previous versions of WIC.
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Table 1.12. WIC summary by fiscal year (Food and Nutrition Service, 2020d).

Average Number Average Benefit Total Benefits Total Costs
of Participants Per Person (in millions (in millions

Year (in thousands) (in dollars) of dollars) of dollars)
2003 7,631 35.28 3,230 4,524
2004 7,904 37.55 3,562 4,887
2005 8,023 37.42 3,602 4,992
2006 8,088 37.07 3,597 5,072
2007 8,285 39.04 3,881 5,409
2008 8,705 43.40 4,534 6,188
2009 9,122 42.40 4,640 6,471
2010 9,175 41.43 4,561 6,689
2011 8,961 46.69 5,020 7,180
2012 8,908 45.00 4,810 6,801
2013 8,663 43.26 4,497 6,501
2014 8,258 43.64 4,324 6,356
2015 8,024 43.37 4,176 6,241
2016 7,696 42.77 3,949 6,021
2017 7,286 41.24 3,606 5,705

individual is eligible for SNAP, then she automatically satisfies the income eligibility requirements for

WIC. In most states, benefits are issued via EBT cards, as in SNAP, but a minority of states still use

vouchers or distribute food to households directly (see Table 1.13 for a list of states that use EBT cards

and statewide adoption dates, and Food and Nutrition Service, 2020c, for additional details including

rollout dates). Of course, when states distribute food to households directly, benefit fraud can only exist

through resale. In either case, in WIC, participants are allocated food packages, instead of monetary

benefits, as in SNAP. Specifically, food packages consist of two forms of benefits: (i) Prescription benefits,

which can be used to buy specific types of foods, up to maximum monthly allotments (by type), and

(ii) a cash benefit value (CBV), that can be used, like cash, to buy fruits and vegetables. For example,

a participant can be allocated a food package with a prescription that lets her buy up to 2 quarts of

milk each month (in addition to prescriptions for other types of foods), and a CBV of $8 to spend

on fruits and vegetables. Prescription benefits are by quantity, rather than cost. The food package

that a participant receives depends on her status (e.g. infant, child, pregnant woman, etc.), not on

her financial situation, as in SNAP (see Food and Nutrition Service, 2015, for a brief overview of food

packages). Moreover, the list of foods that participants can buy with their prescription benefits is stricter

than the list for SNAP, described in Appendix 1.A.8 (see Food and Nutrition Service, 2020a). Since

maximum allotments are monthly, if benefits are not used by the end of the month, they will be lost (see,

for example, Connecticut State Department of Public Health, 2020). Participants are also provided with

resources, including health screening and substance-abuse services (Food and Nutrition Service, 2020b).

At the participant level, the existence of benefit fraud is, likely, much more worrisome in WIC than

in SNAP: If fraud exists in WIC, then at-risk infants and children will not receive aid. That being said,
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Table 1.13. Date of Statewide EBT Adoption for WIC as of April 7, 2020 (Food and Nutrition Service,
2020c).

State EBT Date of Adoption State EBT Date of Adoption
Alabama Yes 08/30/2019 Montana Yes 09/22/2017
Alaska Yes 10/17/2019 Nebraska Yes 11/20/2018
Arizona Yes 11/29/2017 Nevada Yes 08/01/2009
Arkansas Yes 07/16/2018 New Hampshire Yes 12/28/2018
California No N/A New Jersey No N/A
Colorado Yes 11/01/2016 New Mexico Yes 12/01/2007

Connecticut Yes 06/13/2016 New York Yes 05/31/2019
Delaware Yes 10/24/2016 North Carolina Yes 05/09/2018
Florida Yes 04/01/2014 North Dakota No N/A
Georgia No N/A Ohio Yes 08/10/2015
Hawaii No N/A Oklahoma Yes 09/08/2016
Idaho Yes 10/30/2019 Oregon Yes 03/07/2016
Illinois No N/A Pennsylvania No N/A
Indiana Yes 09/06/2016 Rhode Island No N/A

Iowa Yes 05/31/2016 South Carolina Yes 11/18/2019
Kansas Yes 05/30/2018 South Dakota Yes 09/05/2017

Kentucky Yes 10/01/2011 Tennessee Yes 04/03/2019
Louisiana Yes 12/23/2019 Texas Yes 04/01/2009

Maine No N/A Utah No N/A
Maryland Yes 07/06/2017 Vermont Yes 05/01/2016

Massachusetts Yes 11/01/2014 Virginia Yes 05/05/2014
Michigan Yes 03/01/2009 Washington Yes 12/31/2019
Minnesota Yes 08/01/2019 West Virginia Yes 10/28/2013
Mississippi No N/A Wisconsin Yes 09/23/2015
Missouri No N/A Wyoming Yes 01/01/2002
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fewer households receive WIC benefits, making benefit fraud, possibly, less of a concern at the aggregate

level. Some additional considerations: (i) The average amount of benefits is smaller in WIC than in

SNAP (see Tables 1.6 and 1.12), possibly making fraud less likely in WIC, and implying that, if fraud

exists, the amount of benefits exchanged is smaller (see the form of the fraud function fθ(·) in Corollary

1.1), (ii) since the list of goods classified as “food” is stricter in WIC than in SNAP, participants might

find it harder to commit fraud in WIC, making fraud less likely, but these measures could also lead to

stronger preferences for “non-food,” making fraud more likely, and (iii) since participation is associated

with pregnancy and childbirth, if these states-of-being lead to changes in tastes—for instance, an increase

in the demand for “food” through an increase in the demand for, say, baby food—then the assumptions

throughtout the paper might be violated.

1.B Proofs

1.B.1 Proof of Proposition 1.1

Consider the following proof by contradiction: Suppose b(·) is discontinuous at z0 ∈ R2
++. Since a is

continuous, z0 satisfies y0 = c(p0) and b(z0) > 0. Since z0 is at the threshold, increasing income from

y0 to y1 will produce a new design z1 ∈ R2
++ at which b(z1) = 0. If the increase is small, so that

y1 < y0 + b(z0), then ψ(z1) = y1 < y0 + b(z0) = ψ(z0). This implication contradicts Assumption 1.4(iii).

Thus, b(·) is continuous in y on R++.

1.B.2 Proof of Lemma 1.1

By rearranging the inequalities in (1.2.14), we obtain:

x2 − y
π

≤ f ≤ y + b(z)− px1 − x2

1− π
. (1.B.1)

There exists an amount of fraud f ∈ [0, b(z)] that satisfies these inequalities if, and only if, (i) the term

on the left-hand side is no larger than b(z), (ii) the term on the right-hand side is no smaller than zero,

and (iii) the term on the left-hand side is no larger than the term on the right-hand side. All conditions

are satisfied if, and only if:

x2 ≤ y + πb(z), px1 + x2 ≤ y + b(z), and x2 ≤ y +
[
b(z)− px1

]
π. (1.B.2)

Since p > 0 and x1 ≥ 0, the first inequality holds if the last inequality holds, and there exists f ∈ [0, b(z)]

that satisfies (1.2.14) if, and only if, both inequalities in (1.2.21) hold.
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1.B.3 Proof of Lemma 1.2

The budget set B(z, b, π) is non-empty because the household can always afford 0 ∈ R̄. It is compact

because it is the intersection of two closed half-spaces. It is convex because its boundary is a convex

function (as the minimum of two affine functions).

1.B.4 Proof of Proposition 1.3

(i) Demand xθ(·) is well-defined because utility u(·) is continuous and the budget set B(z, b, π) is non-

empty and compact. It is single-valued since utility u(·) is strictly quasi-concave (see Chapter 3.D

in Mas-Colell et al., 1995, for the standard argument for linear budget sets, which can be extended

to any convex budget set). It is strictly positive since G(v) does not intersect the boundary of R̄.

(ii) This result follows primarily from Assumption 1.6(ii).

1.B.5 Proof of Corollary 1.1

By budget exhaustion:

xθ,2(z) = min
{
y + b(z)− pxθ,1(z), y +

[
b(z)− pxθ,1(z)

]
π
}
. (1.B.3)

If this minimum is equal to the first term in the brackets, then:

pxθ,1(z) + xθ,2(z) = y + b(z). (1.B.4)

Since the right-hand side of the first inequality in (1.2.14) is strictly decreasing in the amount f , the

budget constraints in (1.2.14) can only be satisfied at f = 0, implying f(z) = 0. If the minimum in

(1.B.3) is equal to the second term in the brackets, then:

xθ,2(z) = y +
[
b(z)− pxθ,1(z)

]
π. (1.B.5)

Together, with the second inequality in (1.2.14), we obtain:

b(z)− pxθ,1(z) ≤ f. (1.B.6)

Now, notice that, if this inequality is strict, then the first inequality in (1.2.14) implies:

b(z)− pxθ,1(z) < f ≤ y + b(z)− pxθ,1(z)− xθ,2(z)

1− π
. (1.B.7)
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This inequality holds if, and only if:

xθ,2(z) < y +
[
b(z)− pxθ,1(z)

]
π, (1.B.8)

contradicting (1.B.5). Since the discount factor π is in (0, 1), the minimum in (1.B.3) is equal to the

first term in the brackets if, and only if, b(z) ≥ pxθ,1(z). Thus, we obtain:

f(z) =
[
b(z)− pxθ,1(z)

]+
. (1.B.9)

1.B.6 Proof of Proposition 1.4

Let B1(z, b, π) denote the set of bundles in R̄ that satisfy the first inequality in (1.2.21) given (z, b, π),

and let B2(z, b, π) denote the set of bundles in R̄ that satisfy the second inequality in (1.2.21) given

(z, b, π). Each of these sets contain the budget set because:

B(z, b, π) = B1(z, b, π) ∩B2(z, b, π). (1.B.10)

If b(z)
p < xu,1(ψ(z), p), then xu(ψ(z), p) maximizes u(·) over B(z, b, π) since:

• B(z, b, π) is contained in B1(z, b, π),

• xu(ψ(z), p) maximizes u(·) over B1(z, b, π),

• Walras’ law implies xu(ψ(z), p) is in B(z, b, π) when b(z)
p < xu,1(ψ(z), p).

Likewise, if b(z)
p > xu,1(φ(z), πp), then xu(φ(z), πp) maximizes u(·) over B(z, b, π) since:

• B(z, b, π) is contained in B2(z, b, π),

• xu(φ(z), πp) maximizes u over B2(z, b, π),

• Walras’ law implies xu(φ(z), πp) is in B(z, b, π) when b(z)
p < xu,1(φ(z), πp).

It is left to show that, in every other situation, we obtain: xθ(z) = (b(z)/p, y)
′
. If this implication does

not hold, then budget exhaustion implies (i) pxθ,1(z) > b(z), or (ii) pxθ,1(z) < b(z). In the first case,

we can construct a convex combination of xθ(z) and xu(ψ(z), p) in B(z, b, π) (see Figure 1.21(a)); in the

second case, we can construct a convex combination of xθ(z) and xu(φ(z), πp) in B(z, b, π) (see Figure

1.21(b)). In each case, strict quasi-concavity implies that the convex combination is strictly better than

demand. Consequently, we have obtained a contradiction, so that xθ(z) = (b(z)/p, y)
′
.

1.B.7 Proof of Proposition 1.5

Let us consider each regime in order. Since the inequalities in Proposition 1.4 define a partition of the

set of z ∈ R2
++, it is enough to show one direction of every implication:
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Figure 1.28. Proof of Proposition 1.4. On the left, there is a convex combination of xθ(z) and
xu(ψ(z), p) in B(z, b, π); on the right, there is a convex combination of xθ(z) and xu(φ(z), πp) in
B(z, b, π). Open nodes denote examples of combinations.

(i) In the first regime:

• b(z) < pxu,1(y + b(z), p) = pxθ,1(z) = eθ,1(z).

• eθ(z) = pxθ,1(z) + xθ,2(z) = pxu,1(y + b(z), p) + xu,2(y + b(z), p) = y + b(z).

• eθ,2(z) = eθ(z)− eθ,1(z) > eθ(z)− b(z) = y.

(ii) In the second regime:

• eθ,1(z) = pxθ,1(z) = b(z).

• eθ,2(z) = xθ,2(z) = y.

• eθ(z) = eθ,1(z) + eθ,2(z) = y + b(z).

(iii) In the third regime:

• b(z) > pxu,1(y + πb(z), πp) = pxθ,1(z) = eθ,1(z).

• y + πb(z) = πpxu,1(y + πb(z), πp) + xu,2(y + πb(z), πp) < pxu,1(y + πb(z), πp) + xu,2(y +

πb(z), πp) = pxθ,1(z) + xθ,2(z) = eθ(z).

• Budget exhaustion implies eθ(z) ≤ y + b(z). To see that this inequality is strict, first notice

that, under budget exhaustion, b(z) > pxθ,1(z) implies xθ,2(z) = y +
[
b(z) − pxθ,1(z)

]
π (see

the argument in Appendix 1.B.5). Now, in order to reach a contradiction, suppose that

eθ(z) = y + b(z), such that:

y + b(z) = pxθ,1(z) + xθ,2(z) = pxθ,1(z) + y +
[
b(z)− pxθ,1(z)

]
π. (1.B.11)

Rearranging this equality yields pxθ,1(z) = b(z), violating b(z) > pxθ,1(z). Since b(z) >
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pxθ,1(z), budget exhaustion yields:

xθ,2(z) = y +
[
b(z)− pxθ,1(z)

]
π < y. (1.B.12)

1.B.8 Proof of Proposition 1.7

Under Assumptions 1.1 to 1.4, the policy b(·) is continuously-differentiable with respect to income y wher-

ever y 6= c(p). Consequently, by the relationship in Proposition 1.4 and the continuous-differentiability

of standard demand xu(·) on R2
++, demand xθ is continuously-differentiable with respect to y, if it is

not on the boundary of a regime and y 6= c(p). For brevity, let superscript-◦ denote the interior of a set.

Then, we obtain:

∂xθ(z)

∂y
=



∂xu(z)
∂y , if y > c(p),(

1 + ∂b(z)
∂y

)∂xu(y0,p)
∂y0

∣∣
y0=y+b(z)

, if y < c(p) and z ∈ R◦θ,1,(
1
p
∂b(z)
∂y , 1

)′
, if y < c(p) and z ∈ R◦θ,2,(

1 + π ∂b(z)∂y

)∂xu(y0,p)
∂y0

∣∣
y0=y+πb(z)

, if y < c(p) and z ∈ R◦θ,3,

(1.B.13)

for every z ∈ R2
++ at which xθ(·) is not on the boundary of a regime and y 6= c(p). Since b(·) is

continuous and ∂b(z)
∂y is strictly larger than −1, if b(·) is not differentiable at y = c(p), then neither is

demand. Since, in the second and fourth cases in (1.B.13), the partial derivative of xθ(·) with respect to

income y is strictly positive, and in the third case, it is non-positive, demand xθ(·) is not differentiable

on the boundary of any of the regimes.

1.B.9 Proof of Proposition 1.8

(i) Under Assumptions 1.1 to 1.7, and N, total food income y + b(z), the amount y + πb(z), and

standard demand xu,1(·) are strictly increasing in y. Consequently:

• If z ∈ Rθ,1 ∪Rθ,2, then total expenditure eθ(·) is strictly increasing in y since:

eθ(z) = y + b(z) = ψ(z). (1.B.14)

• If z ∈ Rθ,3, then:

∂eθ(z)

∂y
=

(
1 + π

b(z)

∂y

)(
p
∂xu,1(y0, πp)

∂y0
+
∂xu,2(y0, πp)

∂y0

)
y0=y+πb(z)

. (1.B.15)
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To see that this derivative is strictly positive, notice that:

p
∂xu,1(y, πp)

∂y
+
∂xu,2(y, πp)

∂y
> πp

∂xu,1(y, πp)

∂y
+
∂xu,2(y, πp)

∂y
= 1. (1.B.16)

The final equality comes from the fact that its left side is the derivative of:

πpxu,1(y, πp) + xu,2(y, πp) = y. (1.B.17)

Therefore, we obtain:
∂eθ(z)

∂y
> 1 + π

b(z)

∂y
> 0. (1.B.18)

Since the policy b(·) and standard demand xu(·) are continuous, demand xθ(·) is continuous.

Consequently, the results above are sufficient for expenditure eθ(·) to be strictly increasing in

income y. The result, therefore, follows from the fact that every strictly increasing real-valued

function has a well-defined inverse function.

(ii) This result follows from the fact that total expenditure eθ(·) is strictly increasing.

1.B.10 Proof of Theorem 1.2

(i) This result follows from Assumptions B.1(ii) and B.1(iii), and the fact that the second and third

regimes have a shared boundary (see the discussion in Remark 1.2).

(ii) First, notice that, Proposition 1.4 implies:

∂eθ,1(y, p0)

∂y+
=
∂b(z0)

∂y
. (1.B.19)

Also, budget exhaustion implies that, at every z in the interior of Rθ,3, we have:

π
∂eθ,1(z)

∂y
+
∂eθ,2(z)

∂y
= πp

∂xθ,1(z)

∂y
+
∂xθ,2(z)

∂y
= 1 + π

∂b(z)

∂y
. (1.B.20)

Therefore, we have:

π
∂eθ,1(y, p0)

∂y−
+
∂eθ,2(y, p0)

∂y−
= 1 + π

∂b(z0)

∂y
. (1.B.21)

The form of δ(z0) follows from rearranging this equality for the discount factor π. It is left to show

that the denominator of δ(z0) is not zero. This result follows from the fact that:

∂eθ,1(y, p0)

∂y−
= p

(
1 + π

∂b(z0)

∂y

)
∂xu,1(z0)

∂y
> 0 ≥ ∂b(z0)

∂y
. (1.B.22)
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1.B.11 Proof of Theorem 1.7

Since the partial derivative of the policy b(·) with respect to income y is strictly larger than −1, and no

larger than 0, whenever it exists, we obtain the following implications:

(i) z ∈ Rθ,1 implies max{0, b∗θ(eh(p), p) + y∗θ(eh(p), p)− y} ≤ b(z) ≤ b∗θ(eh(p), p).

(ii) z ∈ Rθ,3 implies b∗θ(e`(p), p) ≤ b(z) < b∗θ(e`(p), p) + y∗θ(e`(p), p)− y.

Therefore, the result follows from the fact that:

e`(p) = y∗θ(e`(p), p) + b∗θ(e`(p), p) and eh(p) = y∗θ(eh(p), p) + b∗θ(eh(p), p). (1.B.23)

1.B.12 Proof of Lemma 1.4

First, notice that, budget exhaustion implies:

πpx∗θ,1(w) + x∗θ,2(w) = y∗θ(w) + πb∗θ(w), (1.B.24)

for every w ∈W ∗θ,3. By differentiating both sides of this equality, we obtain:

πp
∂x∗θ,1(w)

∂e
+
∂x∗θ,2(w)

∂e
=
∂y∗θ(w)

∂e

(
1 + π

∂b(z)

∂y

)
y=y∗θ (w)

, (1.B.25)

for every w ∈W ∗θ,3. Therefore:

∂y∗θ(w)

∂e
=

(
πp
∂x∗θ,1(w)

∂e
+
∂x∗θ,2(w)

∂e

)(
1 + π

∂b(z)

∂y

)−1

y=y∗θ (w)

, (1.B.26)

for every w ∈ W ∗θ,3. Since pseudo-demand for food x∗θ,1(·) is strictly increasing in total expenditure e,

and the pseudo-policy b∗θ(·) is non-increasing in total expenditure, we have:

∂x∗θ,2(w)

∂e
<
∂y∗θ(w)

∂e
<

1

1− π

(
p
∂x∗θ,1(w)

∂e
+
∂x∗θ,2(w)

∂e

)
=

1

1− π
, (1.B.27)

for every w ∈W ∗θ,3.

1.B.13 Proof of Theorem 1.9

The bounds for the derivative of pseudo-income y∗θ(·) in Lemma 1.4 imply:

∂x∗θ,2(w)

∂e
<

1

1− π
, (1.B.28)
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at every w ∈W ∗θ,3. Equivalently:

1−
(
∂x∗θ,2(w)

∂e

)−1

< π, (1.B.29)

at every w ∈W ∗θ,3. Since this inequality holds at every w ∈W ∗θ,3:

π∗0 ≡ 1− inf
w∈W∗θ,3

(
∂x∗θ,2(w)

∂e

)−1

= sup
w∈W∗θ,3

{
1−

(
∂x∗θ,2(w)

∂e

)−1
}
≤ π. (1.B.30)

1.C A Lack of Total Non-Parametric Identification

Before continuing, I present a negative result—the triple (u, π, b) is never identified in a completely

non-parametric framework. In fact, I present a stronger result, which implies that we have to restrict

the policy function b(·) to make inference.

Let U0 denote the set of all utility functions that map from R̄ to R and satisfy Assumption 1.6.

Let B0 denote the set of all policy functions that map from R2
++ to R+. Let U denote an arbitrary,

non-empty subset of U0. Let B denote an arbitrary, non-empty subset of B0.

To be sufficiently precise, I will say that θ = (u, π, b) is identified on some set U × (0, 1) × B, if θ is

identified under the restriction that θ ∈ U × (0, 1)× B.

Proposition 1.9. Suppose that demand xθ(·) is observed on R2
++. Under Assumptions 1.1 to 1.7, the

triple θ = (u, π, b) is not identified on U × (0, 1)× B0, for any subset of functions U ⊆ U0.

Proof. Consider b ∈ B0 defined by: b(z) = 0, for all z ∈ R2
++. We cannot identify the discount factor π

because, for every z ∈ R2
++, π̃ ∈ (0, 1), and ũ ∈ U , we must have:

xθ(z) = xθ̃(z), (1.C.1)

where θ̃ = (u, π̃, b).

Proposition 1.9 considers the most favourable case in which demand xθ(·) is observed on the entire

positive orthant, and shows that there is no identification on a set of the form U × (0, 1) × B0. While

the proof of Proposition 1.9 is trivial, it implies that we must impose a restriction on the policy function

(equivalently, on B), if we want to identify θ. In fact, the proof of Proposition 1.9 implies that many

“reasonable” restrictions on the policy function (such as continuity, boundedness, or weak monotonicity)

are also insufficient.

Now, consider a non-trivial case. Let B1 denote the set of policies b ∈ B0 that satisfy:

b(y, p) ≥ p′γ − y, (1.C.2)

for every z ∈ R2
++ and some γ > 0. In words, B1 is the set of policy functions that ensure that the
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household can always purchase at least γ units of food commodities.

Proposition 1.10. Suppose that demand xθ(·) is observed on R2
++. Under Assumptions 1.1 to 1.7, the

triple θ = (u, π, b) is not identified on U0 × (0, 1)× B, if the intersection B ∩ B1 is non-empty.

Proof. Consider the Stone-Geary function in Example 1. For any function, b ∈ B1, the household’s

demand for food commodities is bounded below by απγ > 0. Clearly:

xθ(z) = xθ̃(z), (1.C.3)

for every z ∈ R2
++, where θ̃ = (ũ, π, b), whenever ũ ∈ U0 coincides with u ∈ U0 on {x ∈ X : x1 ≥ απγ}.

We can, therefore, choose any utility function that coincides with the Stone-Geary utility function on

this set, whose indifference curves are “steeper” outside of this set (making non-food commodities less

desirable, ensuring that the household will not consume outside of this set).

Proposition 1.10 considers the most favourable case in which demand xθ(·) is observed on the entire

positive orthant, and shows that (u, π, b) is not identified on a set of the form U0 × (0, 1)×B, whenever

B contains at least one element of B1. Since it would be unreasonable to assume away every policy

function in B1, Proposition 1.10 implies that, in any reasonable framework, we must impose a restriction

on the utility function (equivalently, on U), if we want to identify (u, π, b). These results motivate the

need for partial identification.

1.D More Bounds

In this appendix, I consider the identification of bounds for the pseudo-income function y∗θ(·) and pseudo-

policy function b∗θ(·) in the first regime, when income y is not observed. Recall, e`(p) is the smallest

amount of expenditure e in the second regime given p, and eh(p) is the largest amount of expenditure

e in the second regime given p, and that, under Assumption B.2, these amounts are identified, for any

observable p. By Lemma 1.3, we can identify: y∗θ(e`(p), p), b
∗
θ(e`(p), p), y

∗
θ(eh(p), p), and b∗θ(eh(p), p).

Lemma 1.8. Under Assumptions 1.1 to 1.7, N, and B.2:

∂y∗θ(w)

∂e
≥ 1 and

∂b∗θ(w)

∂e
≤ 0, (1.D.1)

at each w ∈W ∗θ,1.

Proof. By the inverse function theorem:

∂y∗θ(w)

∂e
=

(
∂eθ(z)

∂y

)−1

y=y∗θ (w)

=

(
1 +

∂b(z)

∂y

)−1

y=y∗θ (w)

≥ 1, (1.D.2)
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for every w ∈W ∗θ,1. By the chain rule for differentiation:

∂b∗θ(w)

∂e
=
∂y∗θ(w)

∂e

∂b(z)

∂y

∣∣∣∣
y=y∗θ (w)

≤ 0. (1.D.3)

for every w ∈W ∗θ,1.

Lemma 1.8 says that the rate at which the pseudo-income function y∗θ(·) increases in total expenditure

e is bounded below by 1, and that the pseudo-policy function b∗θ(·) is non-increasing in total expenditure

e.

Theorem 1.12. Under Assumptions 1.1 to 1.7, N, and B.2:

y∗θ(eh(p), p) + |eh(p)− e| ≤ y∗θ(w) and 0 ≤ b∗θ(w) ≤ b∗θ(eh(p), p), (1.D.4)

at each w ∈W ∗θ,1.

Proof. See Lemma 1.8.

Theorem 1.12 implies that we can identify a lower bound for the household’s income y∗θ(w), and an

upper bound for its benefits b∗θ(w), when pseudo-demand x∗θ(w) is in the first regime. Theorem 1.12

follows immediately from the bounds on the derivatives in Lemma 1.8. Unfortunately, we cannot say

much else about these objects.

1.E Data

In this appendix, I describe the datasets used throughout this chapter. I also list the variables used in

each dataset, describe how I format these specific variables for the analysis in Section 1.5, and provide

a collection of relevant summary statistics.

1.E.1 Panel Survey of Income Dynamics

The Panel Survey of Income Dynamics (PSID) is a longitudinal survey in the United States. The PSID

has collected information on households (and their descendants) since 1968. The original sample consists

of approximately 5,000 households. About 60% of this sample is representative of the population in the

United States. The remaining 40% of the sample consists of low-income households. Households are

surveyed every year from 1968 to 1997, and every second year from 1999 to 2017. The PSID includes

questions on household characteristics, income, benefits, and expenditure. In 1999, 2001, and 2003,

households were asked whether they have been disqualified from receiving food stamps for breaking the

rules since the last survey.
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Variables and Formatting

Throughout this appendix, I use variables from 1999 to 2017 on (i) household size, (ii) age and sex,

(iii) household income, (iv) benefit amounts, (v) region of household, (vi) grades completed, (vii) food

expenditure (intended for consumption at home), (viii) total food expenditure, (ix) education, child-

care, housing, transportation, and health expenditure, and (x) disqualification from the benefit pro-

gram. When strictly more than one variable contains information about benefits, I choose the largest

value—for example, in 1999, the household was asked for the amount of benefits that it received that

year (ER14285), and in 2001, it was asked for the amount of benefits that it received two years prior

(ER18371). If there is no information about benefits in a given year, then I use the amount of benefits

that the household received in the previous year—for example, in 2011, the household was asked for

the amount of benefits that it received in 2010 (ER48008), rather than 2011. In a similar fashion, the

questions regarding household income, education expenditure, and childcare expenditure pertain to the

previous year. It should also be noted that there is a debate as to whether the questions regarding food

expenditure pertain to the year of the survey or the previous year (see Blundell et al., 2006, for a larger

discussion). Finally, I drop all observations associated with a household income weakly below -$100,000

or weakly above $200,000.

Summary Statistics

I now report a collection of summary statistics for the population in the PSID. These summary statistics

are intended to give the reader an overview of some basic demographics of the households in the PSID.

In Table 1.14, I report infomation on the size of the household, the age and sex of the head of the

household, household income, and food stamp amounts. In this table, we see that households have 2 to

3 members, on average. We also see that the head of the household is approximately 45 years of age, on

average, and that the head is male approximately 70 percent of the time. Moreover, average household

income is increasing over time, from approximately $47,000 in 1999 to approximately $60,000 in 2017.

Finally, households receive approximately $30 to $100 in food stamps, on average.

In Table 1.15, I report some information on the location of households. In this table, we see that

approximately 15 percent of households are in the Northeast, approximately 25 percent of households

are Central, approximately 45 percent of households are in the South, and approximately 15 percent of

households are in the West. These approximate proportions are relatively constant from 1999 to 2017.

In Table 1.16, I report information on the highest level of education attained by the head of the

household. Most heads have some college education. The second most common level of education is a

high school diploma. However, approximately 20 percent of heads dropped out of high school. The least

common level of education is some post-graduate education (or higher), with only 7 to 12 percent of

heads reaching this level, on average.

In Table 1.17, I report the average annual expenditures of households in the PSID across several
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Table 1.14. Mean household characteristics in the PSID by year. Parentheses contain standard devia-
tions. Age and male variables correspond to the head of the household.

Year Size Age Male Income Benefits
1999 2.78 - 0.69 47,310.13 28.58

(1.51) (0.45) (36,668.89) (154.66)
2001 2.74 - 0.73 48,010.52 38.04

(1.48) (0.44) (37,629.92) (269.66)
2003 2.69 44.93 0.69 50,901.37 44.35

(1.47) (16.07) (0.46) (38,667.27) (223.04)
2005 2.68 44.97 0.69 52,912.61 51.47

(1.47) (16.38) (0.46) (39,852.36) (226.02)
2007 2.65 44.87 0.68 54,881.19 56.28

(1.46) (16.55) (0.46) (41,216.69) (274.35)
2009 2.62 45.02 0.67 57,391.52 68.89

(1.48) (16.64) (0.46) (42,286.30) (336.38)
2011 2.58 45.04 0.66 55,050.03 94.24

(1.47) (16.73) (0.47) (42,393.69) (426.25)
2013 2.57 45.27 0.66 56,443.29 100.63

(1.48) (16.78) (0.47) (43,583.10) (449.57)
2015 2.53 45.47 0.65 58,048.12 80.46

(1.48) (16.69) (0.47) (44,580.42) (362.38)
2017 2.57 45.70 0.66 60,436.24 66.70

(1.53) (16.61) (0.47) (44,541.96) (297.36)

Table 1.15. Mean of household region indicators in the PSID by year. A household is classified as
“Other” if its region is Alaska or Hawaii, a foreign country, or classified as “Wild” in 1999. A household
is classified as “Central” if its region is North Central.

Year Northeast Central South West Other
1999 0.1419 0.2547 0.4175 0.1782 0.0075
2001 0.1454 0.2555 0.4065 0.1847 0.0075
2003 0.1379 0.2497 0.4259 0.1797 0.0065
2005 0.1336 0.2506 0.4319 0.1774 0.0063
2007 0.1293 0.2534 0.4345 0.1751 0.0075
2009 0.1262 0.2476 0.4423 0.1766 0.0070
2011 0.1239 0.2467 0.4437 0.1782 0.0073
2013 0.1211 0.2479 0.4493 0.1741 0.0074
2015 0.1153 0.2492 0.4552 0.1723 0.0078
2017 0.1174 0.2468 0.4533 0.1748 0.0074
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Table 1.16. Mean of indicators for the number of grades that the head of the household has completed
in the PSID by year.

Year Less than HS HS Diploma Some College Some Post-Grad.
1999 0.2389 0.3223 0.3593 0.0793
2001 0.2027 0.3184 0.3915 0.0872
2003 0.2058 0.3504 0.3670 0.0767
2005 0.2029 0.3404 0.3804 0.0761
2007 0.1975 0.3377 0.3891 0.0755
2009 0.1793 0.3142 0.4074 0.0990
2011 0.1769 0.3071 0.4204 0.0955
2013 0.1705 0.2976 0.4290 0.1027
2015 0.1638 0.2926 0.4333 0.1100
2017 0.1652 0.2879 0.4328 0.1139

categories. On average, a household in the PSID spends $5,000 to $7,000 on food, with $4,000 to

$5,000 of that expenditure going toward food intended for consumption at home. Moreover, on average,

households approximately spend $1,000 on education, $450 on childcare, $15,000 on housing, $8,000 on

transportation, and $2,500 on health.

Demographics of Households with Positive Benefits

So far, we have seen some basic demographics of the households in the population in the PSID. However,

in this paper, we are primarily interested in households that receive food stamps. I will now report the

same collection of basic demographics for the subset of households receiving food stamps, and provide a

brief discussion.

As before, in Table 1.18, I report information on the size of the household, the age and sex of the head

of the household, household income, and food stamp amounts for households receiving a strictly positive

amount of food stamps. In this table, we see that households have 3 to 4 members, on average—in other

words, one additional member than the average household in the population. We also see that the head

of the household is approximately 40 years of age, on average, which is slightly younger than the average

household in the population. Moreover, the head is male much less often than in the population. Average

household income is still increasing over time, but, as expected, average household income in this subset

of households is much lower, ranging from approximately $16,000 in 1999 to approximately $27,000 in

2017. Last, households receive approximately $285 to $500 in food stamps, on average. This number is

much larger than for the average household in the population, as we are conditioning on it being positive.

In Table 1.19, I report the locations of households receiving food stamps. In this table, we see that

there is an increase in the proportion of households in the South, with approximately 50 to 55 percent

of households located in the South (up from 40 to 45 for the population in the PSID).

In Table 1.20, I report information on the highest level of education attained by the head of the

household for households receiving food stamps. It can be seen that this subset of households is much
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Table 1.17. Mean household expenditures in the PSID by category and year. Parentheses contain
standard deviations. The category labeled “Food” contains only food intended for consumption at
home.

Year Food All Food Educ. Childcare Housing Trans. Health
1999 3,763.82 5,329.51 932.97 361.91 8,699.57 7,023.21 1,597.95

(2,558.65) (3,387.05) (3,344.17) (1,374.96) (9,746.90) (8,790.02) (2,737.40)
2001 4,077.17 5,899.41 1,105.31 403.36 10,024.54 8,194.98 1,818.81

(2,600.00) (3,549.24) (3,948.44) (1,397.23) (9,198.59) (8,855.57) (3,259.66)
2003 4,002.45 5,788.32 994.55 378.64 9,838.56 8,194.98 2,074.75

(2,719.08) (3,711.70) (3,783.73) (1,457.44) (8,638.06) (9,335.36) (4,074.95)
2005 4,238.46 6,176.76 1,084.14 394.72 14,954.16 8,646.07 2,389.18

(3,003.52) (4,119.48) (4,296.68) (1,508.63) (20,350.82) (9,854.31) (3,544.56)
2007 4,419.02 6,426.07 1,207.22 464.05 16,372.44 9,008.75 2,508.46

(3,218.58) (4,306.02) (4,847.03) (1,725.55) (16,378.64) (9,649.63) (3,888.88)
2009 4,467.44 6,310.79 1,068.90 490.22 16,238.66 8,312.40 2,633.52

(3,233.31) (4,300.32) (4,191.54) (1,943.52) (15,332.47) (9,171.05) (5,077.66)
2011 4,611.03 6,490.52 1,137.13 476.94 16,206.90 8,529.50 2,495.61

(3,401.04) (4,493.06) (4,795.37) (1,897.57) (23,584.73) (8,844.75) (4,331.85)
2013 4,736.18 6,710.32 1,167.34 513.92 15,485.16 8,549.24 3,030.81

(3,550.09) (4,736.60) (5,005.36) (2,030.45) (11,331.18) (7,186.32) (5,494.64)
2015 4,997.19 7,125.71 1,080.77 466.69 15,741.27 8,039.64 3,184.14

(3,629.32) (4,853.50) (4,868.01) (1,880.42) (10,772.16) (7,186.32) (5,376.42)
2017 5,513.09 7,926.83 1,028.12 526.33 16,478.80 8,087.99 3,064.33

(4,023.64) (5,345.61) (4,957.76) (2,083.30) (11,397.28) (7,570.24) (4,519.89)

Table 1.18. Mean household characteristics for households with positive benefits in the PSID by year.
Parentheses contain standard deviations. Age and male variables correspond to the head of the house-
hold.

Year Size Age Male Income Benefits
1999 3.50 - 0.35 16,694.36 285.60

(1.84) (0.47) (14,919.02) (407.16)
2001 3.41 - 0.42 15,849.16 458.57

(1.73) (0.49) (14,231.05) (827.46)
2003 3.33 39.85 0.38 19,185.19 387.69

(1.75) (14.89) (0.48) (16,630.81) (549.51)
2005 3.26 38.98 0.43 22,445.28 363.75

(1.73) (14.30) (0.49) (20,264.84) (497.59)
2007 3.25 39.31 0.41 21,365.56 383.63

(1.74) (14.58) (0.49) (18,443.39) (622.70)
2009 3.16 39.16 0.45 24,573.80 428.05

(1.74) (14.11) (0.49) (21,640.80) (741.39)
2011 3.09 39.18 0.44 23,689.59 499.19

(1.74) (14.40) (0.49) (21,878.68) (872.09)
2013 3.08 39.96 0.45 24,330.61 472.70

(1.71) (14.60) (0.49) (21,610.73) (879.67)
2015 2.96 41.11 0.43 24,593.77 412.67

(1.70) (14.82) (0.49) (22,275.78) (732.58)
2017 3.09 42.36 0.45 27,807.92 369.42

(1.83) (15.13) (0.49) (23,905.59) (614.87)
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Table 1.19. Mean of household region indicators for households with positive benefits in the PSID by
year. A household is classified as “Other” if its region is Alaska or Hawaii, a foreign country, or classified
as “Wild” in 1999. A household is classified as “Central” if its region is North Central.

Year Northeast Central South West Other
1999 0.0843 0.2398 0.5058 0.1700 0.0000
2001 0.0954 0.2234 0.5292 0.1496 0.0021
2003 0.0744 0.2737 0.5189 0.1317 0.0011
2005 0.0846 0.2586 0.5428 0.1138 0.0000
2007 0.0863 0.2615 0.5299 0.1205 0.0017
2009 0.0868 0.2649 0.5264 0.1218 0.0000
2011 0.0885 0.2699 0.5139 0.1275 0.0000
2013 0.0933 0.2604 0.5306 0.1150 0.0005
2015 0.0829 0.2619 0.5310 0.1229 0.0011
2017 0.1037 0.2539 0.5201 0.1221 0.0000

Table 1.20. Mean of indicators for the number of grades that the head of the household has completed
for households with positive benefits in the PSID by year.

Year Less than HS HS Diploma Some College Some Post-Grad.
1999 0.5327 0.2943 0.1682 0.0046
2001 0.5373 0.2733 0.1799 0.0093
2003 0.4538 0.3341 0.2071 0.0047
2005 0.4390 0.3257 0.2266 0.0085
2007 0.4133 0.3562 0.2232 0.0071
2009 0.3742 0.3422 0.2713 0.0121
2011 0.3446 0.3446 0.3005 0.0101
2013 0.3211 0.3421 0.3211 0.0154
2015 0.3351 0.3357 0.3107 0.0183
2017 0.3193 0.3437 0.3149 0.0219

less educated than the population. In particular, most heads in this subset drop out of high school, and

the second most common level of education is a high school diploma, followed by some college education.

Approximately 1 percent of the heads in this subset complete some post-graduate education, which is

down from approximately 7 to 12 percent.

In Table 1.21, I report the average annual expenditures of households receiving food stamps across

several categories. On average, a household receiving food stamps spends $3,000 to $4,000 on food, with

$2,000 to $3,000 of that expenditure going toward food intended for consumption at home. Moreover, on

average, these households approximately spend $300 on education, $300 on childcare, $8,000 on housing,

$4,000 on transportation, and $800 on health. We see a big decrease in expenditures across all categories

because we are now looking at a subset of households with low income.
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Table 1.21. Mean household expenditures for households with positive benefits in the PSID by category
and year. Parentheses contain standard deviations. The category labeled “Food” contains only food
intended for consumption at home.

Year Food All Food Educ. Childcare Housing Trans. Health
1999 2,107.32 2,787.23 172.15 263.92 5,630.29 2,608.38 529.45

(2,085.83) (2,487.86) (583.15) (1,064.20) (16,182.20) (4,030.75) (1,304.12)
2001 2,264.90 3,112.36 309.11 284.75 5,630.29 3,670.69 650.98

(2,287.08) (2,732.06) (1,592.18) (818.17) (3,671.39) (5,237.90) (1,700.39)
2003 2,229.05 2,987.03 297.61 348.16 5,718.27 3,824.09 646.82

(2,344.31) (2,814.64) (1,650.09) (1,358.52) (3,984.87) (5,220.45) (1,670.26)
2005 2,303.16 3,275.34 323.24 247.39 8,826.48 4,299.16 814.18

(2,513.51) (3,204.87) (1,419.35) (1,019.18) (6,493.59) (5,407.22) (1,760.71)
2007 2,459.90 3,409.46 318.90 377.74 9,795.78 4,582.17 858.36

(2,801.13) (3,350.66) (1,342.04) (1,432.66) (10,382.97) (6,014.05) (3,470.12)
2009 2,496.34 3,459.11 346.71 385.74 9,888.89 4,577.50 863.62

(2,831.42) (3,398.60) (1,846.56) (1,584.36) (6,599.71) (5,786.23) (2,435.85)
2011 2,455.53 3,421.13 478.40 322.05 10,457.84 5,446.29 813.60

(2,964.05) (3,521.90) (2,403.32) (1,114.12) (7,276.06) (6,487.76) (2,755.98)
2013 2,529.35 3,621.55 566.46 437.08 10,510.73 5,380.46 999.37

(2,729.82) (3,927.60) (3,066.41) (1,729.64) (7,303.56) (6,387.22) (5,709.01)
2015 2,753.60 3,857.22 452.28 248.23 10,651.76 4,774.37 1,165.99

(2,911.82) (3,653.36) (2,437.40) (1,008.94) (6,713.30) (5,296.86) (6,682.28)
2017 3,240.87 4,633.66 349.17 335.35 11,862.89 4,829.04 869.08

(3,425.63) (4,275.49) (1,907.78) (1301.68) (6,620.83) (5,234.05) (2,101.80)

Demographics of Disqualified Households

I now provide the statistics above for the subset of households that have been disqualified from receiving

food stamps for breaking the rules. In Section 1.5, we saw the number and proportion of these households

in the years in which this question was asked. I now focus only on the demographics of these households.

In Table 1.22, I report information on the size of the household, the age and sex of the head of the

household, and household income for households that have been disqualified from receiving food stamps

for breaking the rules. I do not report information about benefits because it is difficult to interpret this

information (as these households have been disqualified). Once again, we see that disqualified households

are larger, have a younger head, are more likely to have a female head, and have lower income than the

population in the PSID. That being said, the demographics of these disqualified households appear to be

quite similar to the demographics of the subset of households receiving a positive amount of food stamps.

While these numbers are calculated using a relatively small number of households, these numbers suggest

that it is possible that, on average, disqualified households have an even younger head, and are even

more likely to have a female head.

In Table 1.23, I report the locations of the households that have been disqualified from receiving

food stamps for breaking the rules. In this table, we once again see that there is a larger proportion

of households in the South. This proportion is larger than both the proportion in the population as a

whole, and the proportion in the subset of households receiving food stamps, with approximately 60 to
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Table 1.22. Mean household characteristics for disqualified households in the PSID by year. Parentheses
contain standard deviations. Age and male variables correspond to the head of the household.

Year Size Age Male Income
1999 3.50 - 0.45 17,114.27

(1.92) (0.50) (12,654.93)
2001 3.14 - 0.28 13,600.00

(1.77) (0.48) (8,521.54)
2003 3.46 35.93 0.26 16,434.20

(1.76) (8.88) (0.45) (11,323.18)

Table 1.23. Mean of household region indicators for disqualified households in the PSID by year. A
household is classified as “Other” if its region is Alaska or Hawaii, a foreign country, or classified as
“Wild” in 1999. A household is classified as “Central” if its region is North Central.

Year Northeast Central South West Other
1999 0.0909 0.0909 0.5909 0.2272 0.0000
2001 0.2857 0.1428 0.5714 0.0000 0.0000
2003 0.0666 0.2000 0.6666 0.0666 0.0000

65 percent of households located in the South (up from 40 to 45 for the population in the PSID and 50

to 55 for the subset of households receiving food stamps). This number suggests that either households

in the South are more likely to break the rules, or more likely to get caught, or both.

In Table 1.24, I report information on the highest level of education attained by the head of the

household for the households that have been disqualified from receiving food stamps for breaking the

rules. It can be seen that disqualified households are mostly less educated than the population, but more

educated than the subset of households receiving food stamps. It is natural to imagine that breaking the

rules, which requires an understanding of the food stamp system and how to manipulate it, is associated

with a higher level of education.

In Table 1.25, I report the average annual expenditures of disqualified households across several

categories. On average, a disqualified household spends $3,000 to $4,500 on food, with $2,000 to $3,500

of that expenditure going toward food intended for consumption at home. Moreover, on average, these

households approximately spend $600 on childcare, $6,000 on housing, $2,500 on transportation, and

$200 on health. Spending on education varies widely from $100 to approximately $2,500, on average,

depending on the year. Once again, we see a big decrease in expenditures across most categories. Most

Table 1.24. Mean of indicators for the number of grades that the head of the household has completed
for disqualified households in the PSID by year.

Year Less than HS HS Diploma Some College Some Post-Grad.
1999 0.4761 0.3809 0.1428 0.0000
2001 0.2857 0.0000 0.7142 0.0000
2003 0.3333 0.4666 0.2000 0.0000
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Table 1.25. Mean household expenditures for disqualified households in the PSID by category and year.
Parentheses contain standard deviations. The category labeled “Food” contains only food intended for
consumption at home.

Year Food All Food Educ. Childcare Housing Trans. Health
1999 2,830.00 3,638.86 122.27 492.77 5,679.22 1,345.00 220.18

(2,187.84) (2,612.29) (326.77) (1,992.41) (3,847.82) (1,736.90) (427.67)
2001 3,502.28 4,765.14 100.00 802.85 6,261.71 2,566.57 189.28

(2,541.94) (2,817.09) (191.48) (1,269.14) (3,141.39) (3,079.83) (318.48)
2003 2,098.66 3,148.00 2,501.00 409.06 6,167.53 3,541.60 381.13

(1,516.52) (2,268.96) (9,132.74) (820.76) (3,910.71) (3,731.22) (781.33)

of these numbers are even below those for the population of households receiving food stamps. Since

these households report an annual income that is similar to the population of households receiving food

stamps, this result suggests that these households are spending their money in categories that are not

in this table. There is one major exception: These households appear to spend more on childcare. It

is possible that this result is an implication of random variation, but it is also possible that households

with higher childcare costs are financially constrained, and, as a result, more likely to break the rules.

Demographics of Households Spending Less on Food than Benefits

I now provide the statistics above for the subset of households that report spending less on food (in-

tended for consumption at home) than they receive in food stamps. As described throughout the paper,

this expenditure pattern holds if, and only if, the household is committing fraud. While we could ob-

serve households with this expenditure pattern due to measurement error, it is worth investigating the

demographics of these households, and how they differ from the demographics described above.

In Table 1.26, I report information on the size of the household, the age and sex of the head of the

household, household income, and benefits for households that report spending less on food (intended

for consumption at home) than they receive in food stamps. Similar to disqualified households, we see

that the demographics of these households are similar to the subset of households receiving a positive

amount of food stamps, but the household head is younger, on average, and more likely to be female. In

addition to these differences, we now also see lower income and higher benefits, on average. This final

result is natural because we are conditioning on households that report spending less on food (intended

for consumption at home) than they receive in food stamps, and, all else equal, poorer households receive

more in benefits.

In Table 1.27, I consider the locations of the households that report spending less on food (intended

for consumption at home) than they receive in food stamps. Once again, we see a larger proportion of

households in the South, when we compare with the population or the subset of households that receive

a positive amount of benefits, although the difference is slightly smaller than for disqualified households.

In Table 1.28, I report information on the highest level of education attained by the head of the
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Table 1.26. Mean household characteristics for households spending less of food than receiving in benefits
in the PSID by year. Parentheses contain standard deviations. Age and male variables correspond to
the head of the household.

Year Size Age Male Income Benefits
1999 3.45 - 0.28 12,062.66 401.28

(1.86) (0.45) (10,007.62) (642.28)
2001 3.38 - 0.37 11,945.78 765.07

(1.89) (0.48) (11,409.07) (1,294.75)
2003 3.31 36.47 0.28 14,296.85 617.91

(1.75) (13.86) (0.45) (11,674.89) (837.57)
2005 3.09 36.60 0.34 15,263.69 502.83

(1.70) (13.36) (0.47) (15,159.82) (720.54)
2007 3.17 37.66 0.35 16,243.33 567.57

(1.77) (14.99) (0.47) (14,540.90) (1,004.94)
2009 3.12 36.22 0.37 18,679.29 643.12

(1.68) (12.80) (0.48) (17,655.23) (1,178.75)
2011 3.02 37.57 0.37 16,433.13 765.06

(1.77) (14.06) (0.48) (16,008.28) (1,343.25)
2013 3.06 38.04 0.37 17,401.52 796.85

(1.67) (14.22) (0.48) (17,260.75) (1,473.27)
2015 2.90 38.92 0.36 15,939.15 679.66

(1.83) (14.35) (0.48) (14,448.53) (1,248.10)
2017 2.97 41.17 0.37 18,223.85 529.58

(1.86) (15.19) (0.48) (18,398.51) (1,022.28)

Table 1.27. Mean of household region indicators for households spending less of food than receiving in
benefits in the PSID by year. A household is classified as “Other” if its region is Alaska or Hawaii, a
foreign country, or classified as “Wild” in 1999. A household is classified as “Central” if its region is
North Central.

Year Northeast Central South West Other
1999 0.0580 0.2903 0.5354 0.1161 0.0000
2001 0.0782 0.1913 0.5391 0.1913 0.0000
2003 0.0913 0.2608 0.5652 0.0826 0.0000
2005 0.0873 0.2718 0.5372 0.1035 0.0000
2007 0.0654 0.2827 0.5476 0.1041 0.0000
2009 0.0691 0.2939 0.5360 0.1008 0.0000
2011 0.0726 0.2960 0.5344 0.0968 0.0000
2013 0.0894 0.2783 0.5328 0.0994 0.0000
2015 0.0829 0.2890 0.5284 0.0995 0.0000
2017 0.1046 0.2617 0.5344 0.0991 0.0000



www.manaraa.com

Chapter 1. Food Stamp Fraud 102

Table 1.28. Mean of indicators for the number of grades that the head of the household has completed
for households spending less of food than receiving in benefits in the PSID by year.

Year Less than HS HS Diploma Some College Some Post-Grad.
1999 0.4930 0.3194 0.1875 0.0000
2001 0.5523 0.2285 0.2095 0.0095
2003 0.4955 0.3318 0.1681 0.0044
2005 0.4256 0.3682 0.1993 0.0067
2007 0.4223 0.3478 0.2298 0.0000
2009 0.4058 0.3470 0.2352 0.0117
2011 0.3802 0.3593 0.2528 0.0076
2013 0.3939 0.3535 0.2383 0.0141
2015 0.3951 0.3390 0.2512 0.0146
2017 0.3464 0.3746 0.2676 0.0112

household for households that report spending less on food (intended for consumption at home) than

they receive in food stamps. Unlike disqualified households, these proportions are very similar to the

proportions for the population of households receiving food stamps, but now fewer households have some

college education.

In Table 1.29, I report the average annual expenditures of households that report spending less on

food (intended for consumption at home) than they receive in food stamps across several categories.

On average, these households spend $550 to $1,000 on food, with $50 to $150 of that expenditure

going toward food intended for consumption at home. These numbers are extremely small. This result

is consistent with the fact that benefits cannot exceed a maximum allotment, and the fact that we

are conditioning on food expenditure being below the benefit allotment. Moreover, on average, these

households approximately spend $300 on education, $200 on childcare, $6,000 on housing, $3,000 on

transportation, and $500 on health.

1.E.2 Nielsen Homescan Consumer Panel

The Nielsen Homescan Consumer Panel (NHCP) is a longitudinal dataset in the United States. The

NHCP tracks the purchases of households. It started in 2004 and follows approximately 40,000 to 60,000

households each year. Some households participate for multiple years, while others only participate for

a short amount of time. The sample is intended to be representative of the population in the United

States. The NHCP includes questions on household characteristics and income.

Nielsen provides each household with a barcode scanner. Households scan all purchased goods. Prices

are entered by the household or linked with retailer data. Households are financially compensated with

benefits and lotteries, and self-select into participation. This final feature could create a self-selection

bias that is neglected throughout this chapter.
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Table 1.29. Mean household expenditures for households spending less of food than receiving in benefits
in the PSID by category and year. Parentheses contain standard deviations. The category labeled
“Food” contains only food intended for consumption at home.

Year Food All Food Educ. Childcare Housing Trans. Health
1999 49.09 556.12 154.66 187.09 4,580.96 2,191.26 369.51

(262.25) (811.13) (625.25) (553.67) (2,744.09) (3,468.47) (1,056.06)
2001 150.43 678.95 306.13 166.91 4,542.88 2,409.58 411.98

(519.29) (960.74) (1,067.54) (577.55) (3,186.82) (3,921.06) (1,790.23)
2003 110.43 589.53 247.53 245.42 4,668.50 2,416.73 617.59

(457.69) (851.57) (1,228.82) (903.77) (3,403.38) (3,383.91) (2,236.96)
2005 77.83 669.47 275.47 220.34 7,030.40 2,680.96 454.97

(393.67) (919.81) (1,833.60) (756.59) (5,320.78) (3,773.57) (1,189.99)
2007 114.30 811.60 217.02 428.17 7,528.86 3,274.60 533.07

(596.87) (1,382.04) (953.63) (1,520.27) (8,430.94) (4,537.06) (1,433.95)
2009 75.67 738.99 167.97 445.96 8,037.27 3,410.27 498.35

(371.34) (1,092.68) (700.82) (2,050.84) (6,097.02) (5,157.61) (2,440.51)
2011 143.57 771.04 295.38 231.91 8,379.49 3,894.10 452.04

(575.15) (1,132.14) (1,262.92) (919.29) (5,960.74) (5,910.49) (1,470.67)
2013 139.85 866.13 473.39 455.04 8,511.40 3,625.74 445.42

(564.79) (1,398.20) (3,368.63) (2,136.80) (5,537.70) (5,289.77) (1,222.02)
2015 114.58 803.57 385.56 204.63 7,904.00 3,210.60 271.04

(511.40) (1,215.51) (2,747.87) (931.46) (5,488.67) (4,836.76) (809.12)
2017 94.93 994.41 242.78 279.21 9,803.57 2,890.06 341.99

(451.35) (1,369.99) (1,532.73) (1,350.38) (4,821.16) (3,649.30) (1,076.24)

Variables and Formatting

In the NHCP, goods are grouped into eleven distinct departments: (i) health and beauty aids, (ii) dry

grocery, (iii) frozen foods, (iv) dairy, (v) deli, (vi) packaged meat, (vii) fresh produce, (viii) non-food

grocery, (ix) alcohol, (x) general merchandise, and (xi) “magnet data” products (consisting of products

without Universal Product Codes such as fresh produce). I group health and beauty aids with general

merchandise, fresh produce with magnet data products, and deli with packaged meat, for a total of eight

categories of homogeneous goods.

For each household, I sum the total amount paid (less coupon values) for every transaction within each

department and month. I restrict attention to August to October in 2016,18 and keep all households with

positive expenditure in all categories in each month. This procedure leaves us with three observations for

4,807 households for a total of 14,421 observations. The price of a specific category faced by a household

in a month is calculated by dividing the household’s total expenditure in that category and month by

the quantity purchased by the household in that category and month.

I create a benchmark bundle, as described in Section 1.4.1, by taking the sum of all expenditures

within each category in August and dividing it by the sum of all prices within that category in August.

I classify dry grocery, frozen foods, dairy, deli and packaged meat, and fresh produce and magnet data

18As mentioned in Section 1.5.2, these three months are consecutive, and avoid holidays (on which consumption might
be irregular) such as Independence Day, Christmas Day, and New Year’s Eve. The short time frame reduces the possibility
of changing tastes or product availability.
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Table 1.30. Household size in the NHCP sample and in the 2017 Annual Social and Economic Supplement
(ASEC) of the CPS. CPS numbers are in thousands.

Sample CPS

Size Number Proportion Number Proportion

1 665 0.1383 35,388 0.2812
2 2,644 0.5500 42,785 0.3400
3 700 0.1456 19,423 0.1543
4 537 0.1117 16,267 0.1292
5 177 0.0368 7,548 0.0599
6 58 0.0120 2,813 0.0223

7+ 16 0.0054 1,596 0.0126

Total 4,797 1.0000 125,819 1.0000

products as “food” and all other categories as “non-food.” I construct the price of food pi1t faced by

household i in month t by calculating the cost of the food products in the benchmark bundle for that

household in that month. I construct the price of non-food pi2t in a similar fashion. The normalized

price of food pit is calculated by taking the ratio of these prices such that pit = pi1t/pi2t. I construct

the quantity of food xi1t bought by household i in month t by calculating the cost of the food products

in household i’s chosen bundle in month t, and dividing this cost by the price of food pi1t. I construct

the quantity of non-food xi2t in a similar fashion. After constructing pitand xit, I construct normalized

expenditure eit using the relationship: pitxi1t + xi2t = eit.

Summary Statistics

I now report summary statistics and discuss the representativeness of the NHCP sample (after the for-

matting above) by comparing these statistics with those found in the Current Population Survey (CPS).

In Table 1.30, we see the distribution of household size in the NHCP and the CPS. These distributions

are similar, but the NHCP has a smaller proportion of households with a single member, and a larger

proportion of households with exactly two members. Likely, single-member households do not meet the

expenditure requirements described above as often as larger households.

In Table 1.31, we see the distribution of household income in the NHCP and the CPS. Once again,

these distributions are similar. The NHCP has a higher proportion of households with annual income

between $70,000 and $99,999. It is possible that this difference is due to the difference in the distributions

of household size.

In Table 1.32, we see the distribution of the age of the eldest head of the household in the NHCP

and the age of the householder in the CPS. The NHCP has older heads, but this difference can be

explained by the fact that, for the NHCP, I am reporting the age of the eldest head, and for the CPS, I

am reporting the age of the householder, which might be younger than the eldest head.
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Table 1.31. Annual household income in the NHCP sample and in the 2017 Annual Social and Economic
Supplement (ASEC) of the CPS. CPS numbers are in thousands.

Sample CPS

Income Number Proportion Number Proportion

Under $5,000 24 0.0049 4,138 0.0327
$5,000 to $9,999 34 0.0070 3,878 0.0307

$10,000 to $14,999 95 0.0197 6,122 0.0485
$15,000 to $19,999 119 0.0247 5,838 0.0462
$20,000 to $24,999 176 0.0366 6,245 0.0494
$25,000 to $29,999 212 0.0441 5,939 0.0470
$30,000 to $34,999 245 0.0509 5,919 0.0468
$35,000 to $39,999 238 0.0495 5,727 0.0453
$40,000 to $44,999 224 0.0465 5,487 0.0434
$45,000 to $49,999 276 0.0574 5,089 0.0403
$50,000 to $59,999 519 0.1079 9,417 0.0746
$60,000 to $69,999 436 0.0907 8,213 0.0650
$70,000 to $99,999 1,172 0.2438 19,249 0.1524

$100,000+ 1,037 0.2157 34,963 0.2769

Total 4,807 1.0000 126,224 1.0000

Table 1.32. Age of eldest household head in the NHCP sample and the householder in the 2017 Annual
Social and Economic Supplement (ASEC) of the CPS. CPS numbers are in thousands.

Sample CPS

Age Number Proportion Number Proportion

Under 25 6 0.0012 6,361 0.0505
25 to 29 46 0.0095 9,453 0.0751
30 to 34 150 0.0312 10,594 0.0842
35 to 39 241 0.0501 10,651 0.0846
40 to 44 270 0.0561 10,571 0.0840
45 to 49 366 0.0761 11,115 0.0883
50 to 54 557 0.1158 12,180 0.0968
55 to 64 1,477 0.3072 23,896 0.1899

65+ 1,694 0.3524 30,999 0.2463

Total 4,807 1.0000 125,819 1.0000
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1.F More on Conditional Quantile Estimation

In this appendix, I describe the details that are needed to obtain the estimates of the conditional quantiles

in Figures 1.22 and 1.23, and provide estimates at other quantiles for each of the two samples considered.

First, I will briefly describe the details of the construction of the subset of the NHCP consisting of

poorer households with more members and younger female heads. This sample consists of all observations

associated with households that have (i) two or more members, (ii) household income less than $25,000,

and (iii) a female head that is no older than 40 years of age. After conditioning on these demographics,

we are left 3 observations for 248 households for a total of 744 observations.

In the full NHCP sample, I estimate the conditional quantiles of food consumption using λ0 = λ1 = 2

and λ2 = 5 as tuning parameters. In the subset of the NHCP, I use λ0 = λ1 = 0.7 and λ2 = 1.5 as

tuning parameters when τ = 0.1 and τ = 0.25, and then increase λ0 to 1 and λ2 to 1.9 for all other

conditional quantiles.

In Figure 1.29, I plot the estimated conditional quantiles of food consumption for τ = 0.10, 0.75, 0.90.

In each row, on the left, I plot the estimate for the full NHCP sample, and on the right, I plot the estimate

for the subset of the NHCP containing poorer households with more members and younger female heads.

In this figure, we see that there is no prominent ridge or valley in either sample at any of these quantiles.
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Figure 1.29. Estimates of conditional quantiles of food consumption given varous levels of τ . From top
to bottom, I plot, in order, τ = 0.10, 0.75, 0.90. In each row, on the left, I plot the estimate for the
full NHCP sample, and on the right, I plot the estimate for the subset of the NHCP containing poorer
households with more members and younger female heads.
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Chapter 2

Revealed Stochastic Preference

The estimation procedure in Chapter 1 assumes that there exists a conditional quantile of consumption

that coincides with an individual demand function. In demand analysis, it is common to assume that

there is a one-to-one relationship between demand (in the absence of food stamps) and preferences, and

that every conditional quantile of consumption is an individual demand function. This assumption is

extremely strong because it assumes that heterogeneity in the population is finite-dimensional, and that

Engel curves do not cross. I use a variant of this assumption in Chapter 1 because it is simple and

tractable, and existing more flexible methods are lacking.

In this chapter, random fields are used to develop a non-parametric model of consumption with

quasi-rational consumers and infinite-dimensional heterogeneity that is appropriate for scanner data.

This model is used to recover the latent distribution of preferences in the population and perform coun-

terfactual analysis. If variation in preferences is small, preferences can be recovered by approximating

the relationship between demand and preferences using a first-order expansion. Else, preferences can be

recovered numerically. This model is also used to analyze the behaviour of a representative consumer.

In particular, I provide a test for the integrability of the expected demand field at a parametric rate, and

recover the preferences associated with this field. The methods constructed in this chapter are illustrated

in an application to the consumption of alcohol using the Nielsen Homescan Consumer Panel (NHCP).

2.1 Introduction

Scanner datasets have recently become easily accessible. These datasets contain detailed information on

the price, quantity, and date of every purchase made by a large number of consumers. The name follows

from the way that this information is collected: Either retailers or households record this information

by “scanning” purchased goods.

The aim of this paper is to develop a model of consumption for performing demand analysis with

scanner data, without imposing strong restrictions on preferences. This chapter is one of the first anal-

108
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yses on this topic (also see Burda et al., 2008, 2012, Guha and Ng, 2019, and Chernozhukov et al., 2020).

Standard approaches are not appropriate for scanner data. Parametric approaches impose unrealistic

functional forms and error structures (see Brown and Walker, 1989, and Lewbel, 2001); existing non-

parametric approaches require all consumers to face the same prices1 (Blundell, Kristensen, and Matzkin,

2017), lack point identification (Dette et al., 2016; Hausman and Newey, 2016a), and/or require demand

fields to be monotonic in low-dimensional heterogeneity (Blundell, Horowitz, and Parey, 2017), a strong

restriction that requires individual demand fields to stack on top of each other (see Chapter 1).

This chapter develops a non-parametric approach without these limitations. In particular, infinite-

dimensional preference heterogeneity is introduced by replacing the marginal rate of substitution field

with a random field (see Gorman, 1953, 1961, for some of the first uses of fields in the demand literature,

and Beckert and Blundell, 2008, and de Clippel and Rozen, 2020, for related uses of the marginal rate

of substitution field as a baseline for modelling). Prices can vary significantly across consumers. Point

identification follows from the panel structure of scanner data, the random field assumption, and an

assumption on the way that preferences map to consumption. To my knowledge, this analysis is the first

to replace the marginal rate of subsitution with a random field.

Consumers are assumed to be quasi-rational : Even if a realization of the marginal rate of substitution

random field is not compatible with a well-behaved utility function, the consumer solves a system that is

analogous to the first-order conditions in a standard utility maximization problem. Each realization of

the marginal rate of substitution random field can be thought of as an implicit relative valuation that the

consumer equates with relative prices. That being said, some random fields will almost surely produce

field trajectories that can be interpreted as the marginal rate of substitution fields of well-behaved utility

functions. In either case, demand in the population is also a random field.

This model can be used to recover the distributions of demand and preferences in the population,

and perform individual-level counterfactual analysis. It can also be used to test the integrability of the

demand field of a “representative consumer,” and recover the preferences of this consumer.

Recoverability solves an ill-posed problem. When variation in preferences is small, preferences can

be recovered by approximating the relationship between the marginal rate of substitution and demand

random fields using a first-order expansion, and applying an analogue of the delta-method. This approx-

imation yields the explicit form of conditional heteroscedasticity on the demand random field. When

variation in preferences is large, preferences can be recovered numerically. The model is easy to simulate,

avoiding several common computational issues.

In this framework, counterfactual analysis involves a state-space representation and a type of Kalman-

filter algorithm (see Wikle and Cressie, 1999). Although, in many non-parametric settings, we can only

recover wide bounds (see Varian, 1982), the fact that the preferences are drawn from a distribution lets

us make more accurate predictions.

1Scanner datasets have a significant amount of price heterogeneity (see Section 2.6).
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In general, there are two conditions to check for integrability: the symmetry of the Slutsky matrix

(necessary for the expected demand field to satisfy the standard first-order conditions), and the negative

semi-definiteness of the Slutsky matrix (necessary for demand to be consistent with utility maximization).

In the current framework, symmetry is automatically satisfied. I test the integrability of the expected de-

mand field by testing a condition that is slightly stronger than negative semi-definiteness (see Samuelson,

1948, 1950, Hurwicz and Uzawa, 1971, and Hosoya, 2013, 2016, for more on integrability).

The test is based on the theory of generalized functions. It is constructed by interpreting the in-

tegrability condition as a restriction of functionals. This interpretation lets us avoid estimating partial

derivatives, in order to achieve a parametric rate (see Lewbel, 1995, and Haag et al., 2009, for two related

tests of Slutsky symmetry).

The rest of the paper considers a two-good framework, and is organized as follows: In Section 2.2, I

briefly review the standard consumer theory for a twice-continuously-differentiable, strictly increasing,

and strongly quasi-concave utility function in the case of two goods. I focus on (i) the implicit equations

that relate the marginal rate of substitution field, the demand field, and the indifference curves, and

(ii) a positivity condition on the bordered Hessian of the utility function (concerning the curvature of

the indifference curves) and a negativity condition on the “Slutsky coefficient” (concerning the demand

function). In Section 2.3, I describe the stochastic marginal rate of substitution (SMRS) model, and

explain how to deduce both the demand random field and the stochastic indifference curves from the

marginal rate of substitution random field. In Section 2.4, I describe (i) the distributional assumptions

on the observations, (ii) how to identify and estimate the demand random field, (iii) how to identify

and estimate the marginal rate of substitution random field, and (iv) how to perform individual-level

counterfactual analysis. In Section 2.5, I describe how to test the integrability of the demand field of a

representative consumer, and recover the preferences of this consumer (when integrability is satisfied).

Section 2.6 illustrates the approach with an application to alcohol consumption using scanner data from

the Nielsen Homescan Consumer Panel (NHCP). Section 2.7 concludes. Proofs, summary statistics, and

a number of technical details are placed in the appendix. Additional details (including a description of

the underlying probability space) are also placed in the appendix.

2.2 Consumer Theory

In this section, I briefly review selected results in consumer theory (see Varian, 1992, Barten and Böhm,

1993, and Mas-Colell et al., 1995, for broad presentations). I discuss the indifference curves, the marginal

rate of substitution (MRS), the demand field, and their relationships. I place an emphasis on the

integrability condition that is needed to be able to recover the MRS from the demand field by inversion.
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2.2.1 Preferences

Suppose that there are two distinct goods. Let R̄ = R2
+ denote the non-negative orthant with interior R.

A consumer has preferences over bundles of goods x ∈ R̄. Her preferences are summarized by a utility

function u : X̄ → R. Let G(v) = {x ∈ X̄ : u(x) = v} denote the equivalence class containing all bundles

that attain a utility level of v ∈ R.

Consider the following assumption on the utility function u(·) (as in Chapter 1):

Assumption 2.1.

(i) Utility u(·) is twice-continuously-differentiable on R.

(ii) Utility u(·) is strictly increasing with strictly positive partial derivatives on R.

(iii) Utility u(·) is strongly quasi-concave on R:

ξ′
∂2u(x)

∂x∂x′
ξ < 0,

for every ξ ∈ R2 such that ξ 6= 0 and ξ′ ∂u(x)
∂x = 0, at each x ∈ R.

(iv) For each v ∈ R such that v 6= u(0), G(v) is contained in R.

Under Assumption 2.1(i), preferences are smooth (see Proposition 2.3.9 in Mas-Colell, 1985). As-

sumption 2.1(ii) implies that more is strictly better. Assumption 2.1(iii) implies that averages are strictly

better.2 Assumption 2.1(iv) implies that the boundary of R̄ is undesirable. Assumptions 2.1(iii) and

2.1(iv) are common (see pages 415-416 in Katzner, 1968, and Sections 11-12 in Barten and Böhm, 1993).

Under Assumptions 2.1(i) to 2.1(ii), G(v) is characterized by an indifference curve:

G(v) =
{
x ∈ R̄ : x2 = g(x1, v)

}
.

The collection of curves g(·) defines a field, indexed by (x1, v). This field satisfies the following equation:

u(x1, g(x1, v)) = v, (2.2.1)

for every x1 > 0 and v 6= u(0, 0). Therefore, the implicit function theorem implies that the indifference

curve is twice-continuously-differentiable with respect to x1 such that:3

∂g(x1, v)

∂x1
= −u1(x1, g(x1, v))

u2(x1, g(x1, v))
= −m(x1, g(x1, v)), (2.2.2)

where m(x) ≡ u1(x)/u2(x) denotes the marginal rate of substitution (MRS) at x, i.e. the rate at which

2Strong quasi-concavity is actually a slightly stronger condition that is characterized below.
3Throughout, ui(x) denotes ∂u(x)/∂xi, and uij(x) denotes ∂2u(x)/∂xi∂xj .
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the consumer is willing to exchange good 1 for good 2 given x. The marginal rate of substitution defines

a second field, indexed by x.

Lemma 2.1. Under Assumptions 2.1(i), 2.1(ii) and 2.1(iv), the following properties are equivalent:

(i) The utility function u(·) is strongly quasi-concave on R.

(ii) The determinant of the bordered Hessian of u(·) is strictly positive:

∆u(x) ≡ det


0 u1(x) u2(x)

u1(x) u11(x) u12(x)

u2(x) u21(x) u22(x)

 > 0, (2.2.3)

at every x ∈ R.

(iii) The following function of the marginal rate of substitution is strictly positive:

∆m(x) ≡ − ∂m
∂x1

(x) +m(x)
∂m

∂x2
(x) > 0, (2.2.4)

at every x ∈ R.

(iv) The indifference curve is strictly convex with respect to x1:

∂2g(x1, v)

∂x2
1

> 0, (2.2.5)

at every x1 > 0 and v 6= u(0, 0).

Proof. See Appendix 2.A.1.

Lemma 2.1 says that strong quasi-concavity is equivalent to a condition on the sign of the determinant

of the bordered Hessian of u(·), which is equivalent to a diminishing marginal rate of substitution, and

to a positivity condition on the second derivative of the indifference curve g(·, v). Strong quasi-concavity

implies strict quasi-concavity, a common assumption in economics that requires the upper contour sets

of the utility function to be strictly convex (Ginsberg, 1973), but the reverse implication does not hold

because strict quasi-concavity permits the indifference curves to have zero curvature on a nowhere dense

set (see Katzner, 1968).

While there is some difficulty in interpreting the positivity of ∆m(·), this restriction has a natural

interpretation for homothetic preferences. If preferences are homothetic, then the marginal rate of

substitution field m(·) has the form:

m(x) = m0

(
x2

x1

)
,
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for some univariate function m0(·), and every x ∈ R. The function in (2.2.4) equals:

∆m(x) = −m′0
(
x2

x1

)[
m0

(
x2

x1

)
x2

x2
1

+
1

x1

]
,

for every x ∈ R. This quantity is strictly positive if, and only if, the function m0(·) is strictly increasing.

Intuitively, the rate at which the consumer is willing to exchange good 1 for good 2 given x must be

strictly increasing in the slope x2/x1.

2.2.2 Demand Field

Let p̃j denote the price of good j, for each j = 1, 2. The consumer has income ỹ > 0. She can afford a

bundle x ∈ R̄, if p̃1x1 + p̃2x2 ≤ ỹ. She chooses a bundle that solves:

max
x∈R̄

u(x) subject to p̃1x1 + p̃2x2 ≤ ỹ. (2.2.6)

Since the solution to (2.2.6) is invariant to homothetic changes in prices and income, the second good

can be made a numéraire, and prices and income can be measured relative to the price of the second

good. The maximization problem in (2.2.6) becomes:

max
x∈R̄

u(x) subject to px1 + x2 ≤ y, (2.2.7)

where p = p̃1/p̃2 is the relative price of good 1 and y = ỹ/p̃2 denotes income measured in units of good 2.

Let x(z) denote the consumer’s demand given the design z = (y, p)—that is, the set of bundles that

solve (2.2.7). Under Assumption 2.1, a bundle x ∈ R̄ is a member of x(z) if, and only if, it solves the

following system of first-order equations:

m(x) = p and px1 + x2 = y. (2.2.8)

From the first equality, it follows that the slope of the indifference curve at the optimum equals the slope

of the budget line. The second equality is Walras’ law (Walras, 1874), which says that the optimum

is on the boundary of the budget set, an implication of the monotonicity of the utility function u(·).

Equivalently, one can solve:

m (x1, y − px1)− p = 0, (2.2.9)

for x1, and then use the second equality in (2.2.8) to solve for x2. This implicit equation characterizes

demand. In particular, it explains how to deduce x1(z) from m(·). The implicit function theorem implies

that demand is single-valued and continuously-differentiable on R (see Appendix 2.A.2). Thus, demand

x(·) defines another field, indexed by z.

Strong quasi-concavity has the following implication:
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Lemma 2.2. Under Assumption 2.1, the Slutsky coefficient (or compensated price derivative) is negative:

∆x(z) ≡ ∂x1

∂p
(z) + x1(z)

∂x1

∂y
(z) < 0, (2.2.10)

for every z ∈ R.

Proof. See the proof of Theorem 13.1(iv) in Barten and Böhm (1993).

Lemma 2.2 provides a testable implication of strong quasi-concavity. The Slutsky coefficient ∆x(z)

is proportional to the North-West entry of the 2-by-2 Slutsky matrix (see the summary of Slutsky, 1915,

in Allen, 1936). When there are two goods:

(i) the Slutsky matrix is automatically symmetric;

(ii) the Slutsky matrix is negative semi-definite if, and only if, ∆x(z) ≤ 0;

(iii) exactly one eigenvalue of the Slutsky matrix is strictly negative if, and only if, ∆x(z) < 0.

A proof of these relationships is placed in Appendix 2.A.3. The fact that the inequality in (2.2.10) is strict

is essential for the proof of Proposition 2.1 below, and ultimately, for the identification of preferences,

described in Section 2.2.3. If strong quasi-concavity were replaced with strict quasi-concavity, then

the Slutsky matrix would be negative semi-definite, ensuring that ∆x(z) were non-positive, but not

necessarily strictly negative.

Lemma 2.2 itself has the following implication:

Proposition 2.1. Under Assumption 2.1, the following properties hold:

(i) Demand x(·) is invertible on R.

(ii) Inverse demand, denoted z(·) =
[
y(·), p(·)

]′
, is continuously-differentiable on R.

(iii) The following relationship holds on R:

∆x(z) = −∆m(x(z))−1, (2.2.11)

for every z ∈ R.

Proof. See Appendix 2.A.4.

Proposition 2.1(iii) implies that, under Assumptions 2.1(i), 2.1(ii) and 2.1(iv), strong quasi-concavity

is equivalent to the negativity of ∆x(z), which is equivalent to “simple concavity” used for the integrability

in Samuelson (1948).4

4This result follows from (2.2.8). See the footnote on page 243 of Samuelson (1948).
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Inverse demand z(·) defines a fourth field, indexed by x. Because the demand field x(·) satisfies the

first-order conditions in (2.2.8), the inverse demand field z(·) satisfies:

p(x) = m(x) and y(x) = m(x)x1 + x2, (2.2.12)

for every x ∈ R. Therefore, there is a one-to-one relationship between inverse demand z(·) and the

marginal rate of substitution m(·).

2.2.3 Identification

In Section 2.2.2, we showed how to deduce the demand field x(·) from the marginal rate of substitution

field m(·). Let us now show how to deduce the marginal rate of substitution field m(·) from the demand

field x(·), and the field of indifference curves g(·) from the marginal rate of substitution field m(·)—that

is, the procedure described below “identifies” preferences from the observation of the demand field x(·).5

First, consider the following observability assumption:

Assumption A.

(i) Demand x(·) is observed on Z ⊆ R.

(ii) The closure X of the range x(Z) admits an open subset X0 that is dense in X .

Under Assumption A, the demand field x(·) is observed on a subset Z of the interior R, and there

exists an open subset X0 of the range x(Z) whose closure X coincides with the closure of this range.

Assumption A is less stringent than the usual assumption that the demand field x(·) is observed on R.

Now, let:

Wv(X ) =
{
x1 ≥ 0 : (x1, x2) ∈ X ∩G(v), for some x2 ≥ 0

}
, (2.2.13)

denote the projection of the intersection of the closure of the range x(Z) and the graph of the indifference

curve g(·, v) associated with a utility level v ∈ R onto the x1-axis.

We obtain the following result:

Theorem 2.1. Under Assumptions 2.1 and A:

(i) The marginal rate of substitution m(·) is identified over X .

(ii) If Wv(X ) is connected, the curve g(·, v) is identified over the interior of Wv(X ).

Proof. See Appendix 2.A.5.

Theorem 2.1(i) implies that the marginal rate of substitution field m(·) is identified over the closure

of the range of demand. This result does not rely on the restrictions on X in Assumption A(ii). By

5Identification is related to integrability and recoverability in consumer theory (see Mas-Colell, 1977). The discussion
in this section provides a brief, more formal discussion of the results in Section 1.3.4 in Chapter 1.
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x1

x2

X

G(u)

Wu(X )

Figure 2.1. This figure illustrates the sets from Theorem 2.1. The shaded set is the range of demand X .
I draw an indifference curve whose intersection with X is connected, so that Wu(X ) is connected.

Theorem 2.1(ii), the indifference curve g(·, v) is identified wherever it intersects X , as long as it does not

leave and then re-enter X (see Figure 2.1). Theorem 2.1(ii) follows immediately from Theorem 2.1(i) and

the Picard-Lindelöf theorem applied to the differential equation in (2.2.2) subject to the initial condition

g(x∗1, v) = x∗2, for any observable bundle x∗ ∈ G(v). The restrictions on X in Assumption A(ii) ensure

that the solution to this differential equation can be extended to the boundary of X . This result is

related to the integrability theorem (see, for example, pages 243-245 in Samuelson, 1948, Theorem 2 in

Hurwicz and Uzawa, 1971, Theorem 2 in Hosoya, 2013, and Section 2.4 in Hosoya, 2016), and obtained

by assuming that the demand field x(·) is generated by a well-behaved utility function u(·). That being

said, I only use this assumption to characterize the subset on which we can recover the indifference curve.

Indeed, the strict negativity of the Slutsky coefficient ∆x(·) is necessary and sufficient for there to exist

a unique recoverable utility function u(·).

Let us now consider the steps for recovering the consumer’s preferences:

Step 1: Invert the demand field x(·) to recover the inverse demand field z(·) over X . By the first

equality in (2.2.12), the second component p(·) of this inverse is equal to the marginal rate of

substitution field m(·).

Step 2: Fix an observable bundle x∗ ∈ X , and let v ∈ R denote the utility level atta- ined by x∗. Solve

the ordinary differential equation in (2.2.2):

∂g(x1, v)

∂x1
= −m(x1, g(x1, v)), (2.2.14)

with respect to x1 over the interior of Wv(X ) subject to g(x∗1, v) = x∗2. The solution coincides

with the indifference curve that passes through bundle x∗.

Example 2.1. For illustration, let us consider a Stone-Geary utility function with equal weights, defined
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Figure 2.2. An illustration of x1(·) in Example 2.3. I use Stone-Geary µ(·), k1 = 10, k2 = 2, and
σ1 = σ2 = 1/2. See Appendix 2.D for details.

by: u(x) = x
1
2
1 x

1
2
2 , for each x ∈ R̄. Under this specification, we obtain:

m(x) =
x2

x1
. (2.2.15)

By solving the first-order conditions in (2.2.8) and inverting:

x(z) =

(
y

2p
,
y

2

)′
and z(x) =

(
2x2,

x2

x1

)′
, (2.2.16)

verifying the equality of m(·) and p(·) ≡ z2(·). Figure 2.2 illustrates the first component of this demand

field. For simplicity, let us assume that this demand field is observed on Z = R. Under this assumption,

the range X = R is open and convex, and Wv(X ) is the set of all positive numbers, for each v > 0. The

differential equation in (2.2.2) becomes a linear differential equation such that:

∂g(x1, v)

∂x1
= −g(x1, v)

x1
. (2.2.17)

The solution to this differential equation has the following form:

g0(x1, v) =
δv
x1
, (2.2.18)

where the integrating constant δv depends on the utility level v ∈ R. For a fixed utility level v ∈ R, and

a given initial condition g(x∗1, v) = x∗2, this solution is:

g0(x1, v) =
x∗1x

∗
2

x1
. (2.2.19)
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This solution is the indifference curve that passes through x∗ because g(x1, v) = u2

x1
and v = u(x∗)

implies v2 = x∗1x
∗
2. 4

2.3 Stochastic Preferences and Demand

In this section, preferences are made stochastic by replacing the deterministic marginal rate of substitu-

tion field m(·) with a random field M(·). This approach differs from the practice of imposing a stochastic

assumption onto the utility function (see Dette et al., 2016, Kitamura and Stoye, 2018, and Deb et al.,

2018). Instead, I consider the marginal rate of substitution field to be the baseline for modelling (see

Bansal and Yaron, 2004, for its use in an analysis of intertemporal consumption and asset pricing, Beck-

ert and Blundell, 2008, for its use in a setting like ours, and de Clippel and Rozen, 2020, for its use in

some recent literature on revealed preference). The marginal rate of substitution is used because it is

a cardinal characterization of preferences. Consequently, we can expect to identify the distribution of

preferences, rather than a class of distributions that is unique up to an increasing transformation. If

we were to, instead, make the utility function stochastic, then we would also risk imposing assumptions

with misleading interpretations. For instance, the independence of three utility levels u(x), u(x̃), and

u(x̌) has no economic significance because the utility levels 0, u(x̃)− u(x), and u(x̌)− u(x) lead to the

same preference ordering, but violate independence. In this respect, the terminology “random utility”

(introduced by Thurstone, 1927, Domencich and McFadden, 1975, and McFadden, 1981) is misleading.

I refer to the model in this section a “stochastic marginal rate of substitution” (SMRS) model. In this

framework, for each realization of the marginal rate of substitution random field, an analogue of the

first-order conditions in (2.2.9) is used to deduce demand. Hence, demand is also a random field X(·).

2.3.1 Marginal Rate of Substitution Random Field

Fix a probability space (Ω,A, P ).6 The deterministic field m(·) is replaced with a stochastic function

M(·) such that M(x) = M(x;ω), where ω ∈ Ω. In particular, I consider a Gaussian field for logM(·) to

treat the positivity of the marginal rate of substitution M(·).7 This chapter appears to be the first to

model stochastic preferences by replacing the marginal rate of substitution with a random field. Random

fields have been used in economics to model interest rates (Kennedy, 1994; Goldstein, 2000), Arrow-

Debreu prices (Clement et al., 2000), travel flows (Bolduc et al., 1992), peer effects (Lin, 2005, 2010),

future ambiguity (Izhakian, 2020), networks (Leung, 2015; Boucher and Mourifié, 2017), and labour

supply (Crawford, 2019). Random fields are also pervasive in other fields with applications in weather

forecasting, disease and information diffusion, and facial recognition (Cressie, 1993; Vanmarcke, 1983).

Consider the following assumption:

6See Section 2.3.2 and Appendix 2.E for potential probability spaces.
7A stochastic field is called a spatial process when the index is discrete and a random field when the index is continuous.
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Assumption 2.2.

(i) The random field logM(·) has the form:

logM(x) = µ(x) + σ1U1(x1) + σ2U2(x2), (2.3.1)

for every x ∈ R.

(ii) The processes, U1(·) and U2(·), are independent, univariate Gaussian processes.

(iii) The processes, U1(·) and U2(·), are zero-mean with unit-variance.

(iv) The processes, U1(·) and U2(·), are stationary.8

Assumption 2.2 implies that the random field logM(·) is Gaussian with mean µ(x) and covariance

operator:

C(x, x̃) = σ2
1C1(x1, x̃1) + σ2

2C2(x2, x̃2), (2.3.2)

for every x, x̃ ∈ R, where Cj(·) denotes the covariance operator for Uj(·) such that:

Cj(xj , x̃j) = cov(Uj(xj), Uj(x̃j)), (2.3.3)

for j = 1, 2. The expression for the covariance operator C(·) follows from the independence of U1(·) and

U2(·). Under Assumption 2.2, logM(·)− µ(·) is strictly stationary. While Assumption 2.2 restricts the

distribution of the errors to be Gaussian and C(·) to be separable, it does not restrict the mean, and, in

general, logM(·) does not satisfy mean stationarity. Assumption A2(iii) is simply a normalization that

is made without loss of generality, implying that (i) Cj(x, x) = 1, for j = 1, 2, and (ii) C(x, x) = σ2
1 +σ2

2 .

Assumption 2.2 can be used to deduce the distributional properties of M(·):

Proposition 2.2. Under Assumption 2.2:

(i) The random field M(·) is log-normal.

(ii) The expected marginal rate of substitution m̃(·) is:

m̃(x) ≡ E[M(x)] = exp

{
µ(x) +

1

2

[
σ2

1 + σ2
2

]}
. (2.3.4)

(iii) The random field M(·) has a covariance operator CM (·) of the form:

CM (x, x̃) = exp
{
µ(x) + µ(x̃) + σ2

1 + σ2
2

}[
exp{C(x, x̃)} − 1

]
. (2.3.5)

Proof. See Appendix 2.A.6

8Uj(·) is stationary if the value of its covariance operator Cj(·) at (xj , x̃j) only depends on xj − x̃j .
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Figure 2.3. The surface on the left is µ(·) in Example 2.2. The surface on the right is m̃(·) in Example
2.2. I use λm = log(2) and σ2 = 1/2.

Because a log-normal field is characterized by the mean and covariance operator of the underlying

Gaussian field, the marginal rate of substitution random field M(·) is characterized by the functional

parameters, µ(·) and C(·), and the scalar parameters (σ1, σ2). Equivalently, it is characterized by the

expected marginal rate of substitution m̃(·), the operator C(·), and the scalar parameters (σ1, σ2), since

there is a one-to-one relationship between µ(·) and m̃(·) given C(·) and (σ1, σ2).

Consider three examples:

Example 2.2. Consider a simple parametric model with scalar heterogeneity to ground the reader’s

perception of this framework in something familiar. Specifically, consider the general form of the Stone-

Geary specification in Example 2.1, defined by: u(x) = xα1x
1−α
2 , for some α ∈ (0, 1) and each x ∈ R̄.

Under this specification, we obtain:

m(x) =

(
α

1− α

)
x2

x1
, (2.3.6)

for every x ∈ R. Scalar heterogeneity is introduced by assuming that λ ≡ α
1−α is log-normal. Under this

assumption:

logM(x) = log(x2)− log(x1) + λm + σ2U, (2.3.7)

in which U is standard normal and λm denotes the mean of log λ. This model satisfies Assumption 2.2

with (i) µ(x) = log(x2) − log(x1) + λm, (ii) σ1 = σ, (iii) σ2 = 0, and (iv) U1(x1) = U . Under this

specification, Proposition 2.2 implies:

m̃(x) =
x2

x1
· eλm+σ2

2 . (2.3.8)

Therefore, the expected marginal rate of substitution m̃(·) is the Stone-Geary marginal rate of substi-
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Figure 2.4. The surface on the left is logM(·) under Ornstein-Uhlenbeck errors. The surface on the
right is M(·) under Ornstein-Uhlenbeck errors. I use µ(x) = log(x2) − log(x1), k1 = 10, k2 = 2, and
σ1 = σ2 = 1/2. See Appendix 2.D for details.

tution given the parameter:

α =
(

1 + e−λm−
σ2

2

)−1

. (2.3.9)

4

Example 2.3. Suppose that Uj(·) is an independent Ornstein-Uhlenbeck diffusion process with drift

kj > 0 and volatility ηj > 0, for each j = 1, 2. The Ornstein-Uhlenbeck process Uj(·) is the stationary

solution to the following stochastic differential equation (SDE):

dUj(xj) = −kjUj(xj)dxj + ηjdWj(xj), (2.3.10)

where Wj(·) is a Brownian motion. This solution is a Gaussian process with zero-mean and covariance

operator:

Cj(xj , x̃j) =
η2
j

2kj
exp{−kj |xj − x̃j |}. (2.3.11)

To satisfy Assumption 2.2(iii), this process must have unit-variance. This property holds if, and only if,

ηj =
√

2kj . Under this restriction, we get a Gaussian process with zero-mean and covariance operator:

Cj(xj , x̃j) = exp{−kj |xj − x̃j |}. (2.3.12)

If both U1(·) and U2(·) are defined in this way, then:

C(x, x̃) = σ2
1 exp{−k1|x1 − x̃1|}+ σ2

2 exp{−k2|x2 − x̃2|}. (2.3.13)
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The zero-mean Ornstein-Uhlenbeck process (see Ornstein and Uhlenbeck, 1930) is the only strictly

stationary, Gaussian, Markov process in one-dimension with zero-mean and continuous trajectories.

This process is tractable because (i) it is easy to simulate, (ii) it is the analogue of a Gaussian AR(1)

process in continuous space (to be precise, a space-discretized Ornstein-Uhlenbeck process is a Gaussian

AR(1) process, for any discretization step), and (iii) it is a diffusion process. Figure 2.4 displays a

realization of the marginal rate of substitution random field M(·) given µ(x) = log(x2) − log(x1) and

Ornstein-Uhlenbeck errors with parameters k1 = 10, k2 = 2, and σ1 = σ2 = 1/2. 4

Example 2.4. While the Ornstein-Uhlenbeck process is tractable because it is the stationary solution

of an SDE, Assumption 2.2 does not require Uj(·) to be a diffusion process. The Gaussian distribution

of Uj(·) can be directly defined by its covariance operator. To illustrate, suppose that Uj(·) is an

independent zero-mean Gaussian process with a squared-exponential covariance operator, parameterized

by some kj > 0:

Cj(xj , x̃j) = exp{−kj |xj − x̃j |2}, (2.3.14)

for each j = 1, 2. It is rather easy to show that this operator is positive semi-definite, making it a valid

covariance operator. Under this specification:

C(x, x̃) = σ2
1 exp

{
− k1|x1 − x̃1|2

}
+ σ2

2 exp
{
− k2|x2 − x̃2|2

}
. (2.3.15)

The squared exponential covariance operator is the most used covariance operator in the machine learning

literature (Rasmussen and Williams, 2006). Like the Ornstein-Uhlenbeck process in Example 2.3, this

process is tractable because (i) it is easy to simulate, and (ii) it is the analogue of a Gaussian AR(∞)

process in continuous space. Figure 2.5 displays a realization of the marginal rate of substitution random

fieldM(·) given µ(x) = log(x2)−log(x1) and squared-exponential errors with parameters k1 = 10, k2 = 2,

and σ1 = σ2 = 1/2. 4

Remark 2.1. The choice of the random field for the error term is due to the difficulty in defining

processes with continuous indices. Loosely speaking, it is not appropriate to directly extend the notion

of white noise and say that errors ε(x), x varying, are independent and identically distributed with, say,

a Gaussian distribution. Indeed, such an assumption would create a jump in the field trajectory, at every

x ∈ R. It would be without practical meaning, impeding the development of an appropriate probabilistic

theory, and making it impossible to use local analysis (see Section 2.3.2, as well as Appendix 2.E).

Remark 2.2. The uncertainty is not represented by a single random variable, but by a random field. It

depends on the bundle x ∈ R, allowing for conditional heteroscedasticity. The uncertainty on demand

will also be represented by a random field, rather than a scalar or a finite-dimensional shock (see Beckert

and Blundell, 2008, Blundell, Horowitz, and Parey, 2017, and Allen and Rehbeck, 2019, for examples of

such strong restrictions).
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Figure 2.5. The surface on the left is logM(·) under squared-exponential errors. The surface on the
right is M(·) under squared-exponential errors. I use µ(x) = log(x2) − log(x1), k1 = 10, k2 = 2, and
σ1 = σ2 = 1/2. See Appendix 2.D for details.

Remark 2.3. The additively decomposable form of the error term in Assumption A2(i) is for simplicity.

This decomposable form assumes that a shock to the marginal rate of substitution at x1 will persist

across all values of x2 given x1, and a shock to the marginal rate of substitution at x2 will persist across

all values of x1 given x2, a form of behavioural separability in taste uncertainty.

Remark 2.4. The parameter σj measures the variability of the shocks in the direction of good j,

describing the degree of uncertainty in that direction. As σ1 and σ2 approach zero, we approach the

deterministic model. If all choices are made by one consumer, and the preferences associated with the

exponential transform of µ(·) are “rational,” then we can interpret
√
σ2

1 + σ2
2 , as a measure of the size of

the consumer’s deviation from economic rationality. While not entirely analogous, this remark is related

to a subset of the economic literature concerned with such measures (Afriat, 1967; Houtman and Maks,

1985; Varian, 1990; Echenique et al., 2011; Dean and Martin, 2016).

Remark 2.5. In a recent set of literature on revealed preference (see Echenique et al., 2011, Deb et al.,

2018, and Allen and Rehbeck, 2019), it is common to assume quasi-linear preferences—in particular,

utility functions u(·) of the form: u(x) = ϕ(x1)+x2, where ϕ : R+ → R is a locally non-satiated function.

If ϕ(·) is differentiable, then m(x) = dϕ(x1)/dx1 does not depend on x2, and x1(z) does not depend on

y. In other words, quasi-linear preferences assume that there is no income effect on the demand for good

1. Even if such a restriction is placed on the mean m̃(·) of the marginal rate of substitution random field

M(·), an income effect would appear in this random field because of the uncertainty, as long as σ1 6= 0.



www.manaraa.com

Chapter 2. Revealed Stochastic Preference 124

2.3.2 Skorokhod Space

I have not yet discussed the conditions that are needed to define a random field. In particular, I have

not defined a probability space. From now on, I restrict this space to be the Skorokhod space, commonly

denoted by D[0, c)2, where c > 0 can be finite or infinite. The Skorokhod space is standard for random

fields, consisting of all surfaces that are cadlag (a French terminology that means right-continuous with

left limits). This space can be turned into a complete separable metric space (also known as a Polish

space) by equipping it with an appropriate metric (see McFadden, 2005, for the definition of a Polish

space in consumer theory, and Gikhman and Skorokhod, 1966, Billingsley, 1999, and Appendix 2.E for

examples of metrics). Therefore, the standard measurable space is (Ω,A) =
(
D[0, c)2,D

)
, where D

denotes the Borel sets associated with the Skorokhod Polish space D[0, c)2. This space is appropriate

for one-dimensional stochastic surfaces such as M(·). In what follows, we will also have to consider

two-dimensional stochastic surfaces such as the demand random field. For such surfaces, the standard

measurable space is the product space
(
D[0, c)2,D

)⊗2
. I introduce these spaces to apply extensions of

standard results to random fields such as differentiability, weak convergence (convergence in distribution),

the Continuous Mapping Theorem, and the Central Limit Theorem (see Appendix 2.E).

Let us now discuss consequences of the definition of the probability space: Without additional struc-

ture, there is no reason to believe that any particular realization of the marginal rate of substitution

random field M(·) will be consistent with consumer theory (see also the discussion in Dette et al., 2016,

especially footnote 5). For example, the trajectories of the Ornstein-Uhlenbeck process in Example 2.3

are non-differentiable almost everywhere, implying that the realizations of M(·) cannot necessarily be

structurally interpreted as marginal rate of substitution fields. Next, consider the Gaussian process asso-

ciated with the squared-exponential covariance operator in Example 2.4. The trajectories of this process

have derivatives of all orders, ensuring that the ordinary differential equation in (2.2.2) can always be

solved to obtain a unique family of indifference curves associated with some strictly increasing utility

function, but the stochastic version of ∆m(·) will almost surely violate its positivity condition.

These inconsistencies with consumer theory will be resolved in two different ways: First, consumers

will be assumed to be quasi-rational (see Assumption 2.3 in Section 2.3.3 below). The realizations of

the marginal rate of substitution random field M(·) will be seen as implicit relative valuations that the

consumer equates with relative prices. When M(·) is consistent with consumer theory, she solves the

first-order conditions in (2.2.8), and when it is not, she solves an analogue of these conditions, without

them being literally interpreted as first-order conditions. Second, even if the realizations of M(·) are

not consistent with consumer theory, there can exist a rational representative consumer. In other words,

expected demand might satisfy integrability, allowing us to construct and recover a coherent notion of

aggregate preferences to carry out welfare analysis (see Section 2.5.1).
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2.3.3 Demand Random Field

The marginal rate of substitution random field M(·) is not directly observed. Instead, we observe choices

made by consumers under various designs z = (y, p). Therefore, it is important to be precise about the

relationship between the marginal rate of substitution random field M(·) and the demand random field,

denoted X(·).

As mentioned above, even if a realization of the marginal rate of substitution random field M(·) is

not compatible with consumer theory, it is assumed that the consumer solves a system that is analogous

to the first-order conditions in (2.2.8). Without more structure, there is, a priori, no reason for there to

exist a unique bundle that equates the marginal rate of substitution M(·) with the price p. Below, it is

assumed that, regardless of the interpretation, the choice of the solution is done in a measurable way.

Assumption 2.3. The random field X(·) is a measurable solution to:

M(X1(z), X2(z)) = p and pX1(z) +X2(z) = y. (2.3.16)

As mentioned in Section 2.2.2, instead of solving the system in (2.3.16), one can solve:

M(X1(z), y − pX1(z))− p = 0, (2.3.17)

for X1(z), then use the second equality in (2.3.16) to solve for X2(z). Under Assumption 2.3, there is a

measurable function A(·) that transforms the inverse demand random field, say Z(·), into the demand

random field X(·). The properties of X(·) cannot be deduced in closed-form from the properties of M(·),

since A(·) is in general non-linear.

2.3.4 Small-Sigma Approximation

If σ1 and σ2 are small, the implicit equation in (2.3.17) can be approximated by a first-order expansion.

This method requires an appropriate definition of a differential (see Appendix 2.E.6). Under standard

regularity conditions, an analogue of the delta-method (or Slutsky method) can be applied to the random

fields to approximate the distributions of the marginal rate of substitution and demand random fields.

Consider the following assumption:

Assumption S. The parameters σ1 and σ2 are sufficiently small.

With slight abuse of notation, let x(z) = E[X(z)] denote the expectation of the demand random field

given z ∈ R, and let m(·) denote the second component of its generalized inverse invx(·). If x(·) is a

bona fide demand field, then m(·) is the marginal rate of substitution for this field, and the analogue

of the differential equation in (2.2.2) can be solved to recover a unique field of indifference curves g0(·).

If a realization of M(·) is continuously-differentiable, then it also yields a unique preference field G0(·),
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defined by the following ordinary differential equation:

∂G0(x1, v)

∂x1
= −M(x1, G0(x1, v)). (2.3.18)

For exposition, it is assumed, without loss of generality, that g0(·, v) and G0(·, v) pass through a bundle,

denoted (x10, x20), such that g0(x10, v) = x20 and G0(x10, v) = x20.

Let o(σ) denote the stochastic small-o for (σ1, σ2).

Proposition 2.3. Under Assumptions 2.2, 2.3, and S:

(i) The random field M(·) is approximately Gaussian such that:

M(x) = m(x) +m(x)
[
σ1U1(x1) + σ2U2(x2)

]
+ o(σ), (2.3.19)

for every x ∈ R.

(ii) The random field X1(·) is approximately Gaussian such that:

X1(z) = x1(z)− p∆x(z)
[
σ1U1(x1(z)) + σ2U2(x2(z))

]
+ o(σ), (2.3.20)

for every z ∈ R.

(iii) If every realization of the random field M(·) is continuously-differentiable, then the random field

G0(·, v) is well-defined. Furthermore, this random field satisfies:

G0(x1, v) = g0(x1, v) + h0(x1, v;σ, U1, U2) + o(σ), (2.3.21)

for every x1 > 0, where h0(x1, v;σ, U1, U2) solves:

∂h(x1, v)

∂x1
= − ∂m

∂x2

[
x1, g0(x1, v)

]
h(x1, v)

+ m(x1, g0(x1, v))
[
σ1U1(x1) + σ2U2(g0(x1, v))

]
,

(2.3.22)

subject to h(x10, v) = 0.

Proof. See Appendix 2.A.7.

By the linearity of the differential equation in (2.3.22):

h0(x1, v;σ, U1, U2) = σ1h1(x1, v) + σ2h2(x1, v), (2.3.23)
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for every x1 > 0, where hj(x1, v) solves:

∂hj(x1, v)

∂x1
= − ∂m

∂x2

[
x1, g0(x1, v)

]
hj(x1, v) +m(x1, g0(x1, v))Vj(x1, v), (2.3.24)

subject to hj(x10, v) = 0, such that V1(x1, v) = U1(x1) and V2(x1, v) = U2(g0(x1, v)).

Small-sigma analysis is standard in physics (also known as perturbation theory), first used in Econo-

metrics by Kadane (1971). Under the small-sigma assumption, the transformation A(·) is locally lin-

earized:

E[Z] = invA(E[X]) + o(σ) = invx+ o(σ) = m+ o(σ), (2.3.25)

in which invA(·) denotes the measurable inverse of A(·) that transforms the demand random field X(·)

into the inverse demand random field Z(·). Therefore, if σ1 and σ2 are sufficiently small, the expected

marginal rate of substitution m̃(·) must be “close” to the second component of the generalized inverse

of expected demand m(·).

Propositions 2.3(i) and 2.3(ii) describe the link between the marginal rate of substitution random

field M(·) and the demand random field X(·). Note that, the knowledge of all marginal distributions

of M(·) is not enough to know all marginal distributions of X(·). Proposition 2.3 provides the form of

conditional heteroscedasticity on the random fields. There are two sources of heteroscedasticity for the

demand random field X(·):

(i) a multiplier effect involving the Slutsky coefficient ∆x(·);

(ii) a deformation of space through x(·).

This finding is somewhat related to Brown and Walker (1989), who show that, if consumption choices are

made with respect to well-behaved (but possibly distinct) utility functions, then additive disturbances on

demand exhibit conditional heteroscedasticity. The result above says that, even if choices are not made

with respect to well-behaved utility functions, but consumers are quasi-rational, and errors are small and

Gaussian, we can model demand X(·) using additive disturbances with conditional heteroscedasticity.

Example 2.1 (Continued). To illustrate the deformation of space, let us consider the Stone-Geary

specification (with equal weights). Under this specification:

x(z) =

(
y

2p
,
y

2

)′
. (2.3.26)

Let Z denote a square in the space of income and prices, defined by:

Z =
{
z ∈ R : 1 ≤ p ≤ 2 and 1 ≤ y ≤ 2

}
. (2.3.27)
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Figure 2.6. Domain and Range in Example 2.1. On the left, I illustrate a square in the space of
income and prices from Example 2.1. On the right, I illustrate the range of demand over this square
from Example 2.1.

The range X of the demand field x(·) over Z is not a rectangle. It has the following form:

X =

{
x ∈ R̄ :

x2

2
≤ x1 ≤ x2 and

1

2
≤ x2 ≤ 1

}
. (2.3.28)

Figure 2.6 displays the regions, Z and X . The shape of X follows from homotheticity. In general,

demand is non-linear, resulting in a highly non-linear deformation of space. 4

The following corollary is easily deduced from Proposition 2.3:

Corollary 2.1. Under Assumptions 2.2, 2.3, and S:

(i) The approximate distribution of M(·) has mean m(x) and covariance operator:

CM (x, x̃) = m(x)C(x, x̃)m(x̃), (2.3.29)

for every x, x̃ ∈ R.

(ii) The approximate distribution of X1(·) has mean x1(z) and covariance operator:

CX(z, z̃) = p∆x(z)C
[
x1(z)− x1(z̃)

]
p̃∆x(z̃), (2.3.30)

for every z, z̃ ∈ R.

Proof. This result follows immediately from Proposition 2.3.

2.4 Identification and Estimation of the Random Fields

In this section, I introduce the assumptions on the observations, then discuss the identification and

estimation of the demand random field, and the marginal rate of substitution random field. I show
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that the distribution of the marginal rate of substitution random field can be recovered from individual

observations of consumption, whenever we have a panel with at least two observations per individual. I

also show how to perform counterfactual analysis at the individual-level (with confidence bands) in the

small-sigma framework.

2.4.1 Assumptions on Panel Observations

Let us consider panel data, indexed by both consumers i and dates t. In the application in Section

2.6, we observe a large number n of consumers and a small fixed number T of months. The asymptotic

results are written for n tending to infinity with fixed T .

Assumption 2.4 (Latent Model).

(i) Consumer i has preferences Mi(·), for each consumer i = 1, . . . , n.

(ii) Preferences (Mi) do not depend on the month t.

(iii) Preferences (Mi) are independent and identically distributed.

Assumption 2.4 implies that the fields (logMi) are independently drawn from the same unknown

infinite-dimensional distribution and that these fields are constant over time. Assumption A4 rules out

the possibility of consumers buying goods for investment or future consumption.

Assumption 2.5 (Panel Observations).

(i) We observe (xit, zit), for each consumer i = 1, . . . , n and month t = 1, . . . , T . These observations

satisfy the constraint: pitxi1t + xi2t = yit, for each consumer i = 1, . . . , n and month t = 1, . . . , T .

(ii) The quantities (xijt) are strictly positive.

(iii) Designs (zit) are exogenous to consumption decisions.

Assumption 2.5(ii) lets us focus on the consumption levels, rather than the qualitative decision to

consume. In the application in Section 2.6, we drop all consumers that do not consume any alcohol

(see Section IV.A in Blundell et al., 2017, for a similar practice in a non-parametric analysis of gasoline

demand). For this assumption to be reasonable, we need an appropriate level of aggregation. Indeed, at

an extremely disaggregate level, we would have to account for context effects such as compromise effects,

attraction effects, and similarity effects (see Huber et al., 1982, Noguchi and Stewart, 2014, Crosetto

and Gaudeul, 2016, and Cataldo and Cohen, 2018, for recent papers). Context effects are not within

the scope of this paper (but we can partially adjust for an effect of quality, as described in Section 2.6).

Assumption 2.5(iii) is standard, but rarely written (see Chernozhukov et al., 2020, for more on

endogenous prices in scanner data). This assumption imposes a constraint on the decision process since

expenditure is observed, rather than income: We can imagine consumers first deciding how much to
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Table 2.1. State-space model

State Equations Mi(·) and Xi(·), for i = 1, . . . , n, related by (2.3.16)
Measurement Equations Xit = Xi(Zit), for Zit drawn from π(·)

spend on certain groups of goods, then deciding how to spend their expenditure within each group. The

first decision is based on inter-group random utility; the second decision is based on intra-group random

utility. Assumption 2.5(iii) says that these decisions are independent, and that the two aggregate goods

in the model are separable from all other excluded goods, but this assumption will not be tested.

From a probabilistic point of view, we can imagine the designs Zit = (Yit, Pit) being independently

drawn from a distribution π(·) with realization zit. Here, Mi(·) and Xi(·) are high-dimensional state

variables, and Xit = Xi(Zit) is a pair of measured quantities with realization xit. Theses quantities are

doubly stochastic since both Xi(·) and Zit are stochastic. While consumption profiles (Xi1, . . . , XiT ),

i = 1, . . . , n, are independent, the quantities Xit demanded by a given consumer i are linked since the

realized preferences Mi(·) do not change over time. The probabilistic assumptions are summarized in

Table 2.1 in terms of a state-space model. Under Assumption 2.5, we can, theoretically, derive the

distribution of all observed quantities (Xit) given all designs (Zit), and use this information to estimate

the latent parameters of the model.

2.4.2 Distribution of Demand

An analysis of the demand random field X(·) is needed to predict the effect of a change in the distribution

of designs π(·) on the distribution of demand. It will also be needed to recover the distribution of

preferences in the absence of a small-sigma assumption.

Expected Demand Field

Let us first consider the expected demand field x(·). Under Assumptions 2.4 and 2.5:

x(z) ≡ E[X(z)] = E[Xi(z)] = E[Xit|Zit = z]. (2.4.1)

Therefore, this field is identified, and its first component can be consistently estimated by the following

Nadarya-Watson estimator:

x̂1(z) =

n∑
i=1

T∑
t=1

xi1tK
(
zit−z
h

)∑n
i=1

∑T
t=1K

(
zit−z
h

) , (2.4.2)

where K(·) denotes a product kernel:

K

(
zit − z
h

)
= K1

(
z1it − z1

h1

)
K2

(
z2it − z2

h2

)
, (2.4.3)
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in which Kj : R → R+ is itself a kernel that satisfies some standard regularity conditions, and hj is a

bandwidth that tends to zero at an appropriate rate as the number of observations tends to infinity, j =

1, 2. After estimating the first component of x(z), the budget constraint can be applied to consistently

estimate the second component as:

x̂2(z) = y − px̂1(z). (2.4.4)

Consider the following regularity conditions:

Assumption 2.6.

• Conditions on the random field:

(i) The expected demand field x1(·) is continuously-differentiable on R.

(ii) The random field X1(·) satisfies a weak dependence condition.

(iii) The (marginal) distribution of the measured quantity Xi1t conditional on Zit = z is contin-

uous with a strictly positive density fz(·). The conditional mean x1(·) and density fz(·) are

sufficiently regular in a neighbourhood of z.

• Condition on the designs:

(iv) The designs (Zit) are independently and identically drawn from a continuous distribution that

admits a continuous and strictly positive density π(·).

• Joint condition on the design and expected field:

(v) E[x1(Z)] =
∫
x1(z)π(z)dz exists.

• Conditions on the kernel:

(vi) Kj(u) ≥ 0, for u ∈ R and j = 1, 2.

(vii)
∫
Kj(u)du = 1 and

∫
uKj(u)du = 0, for j = 1, 2.

(viii) Kj(u) = o
(
||u||−ξ

)
, with ξ > 2, as u→∞, for j = 1, 2.

• Condition on the bandwidth:

(ix) hj → 0 and
√
nhj →∞ as n→∞, for j = 1, 2.

Assumption 2.6 focuses on the main regularity conditions (see Robinson, 2011, for additional technical

assumptions needed to ensure that x1(·) and fz(·) are sufficiently regular), and combines the conditions

needed for convergence with those needed for asymptotic normality. Assumption 2.6(ii)—a condition of

“small spatial dependence” between X1(z) and X1(z̃), for distinct z, z̃ ∈ R—is standard. It is satisfied

for the Gaussian processes in Examples 2.3 and 2.4 because they are “strong mixing” (see Robinson,

1983, for the use of a strong mixing condition). Assumption 2.6(iii) is also satisfied in these examples if
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π(·) is regular, since x1(·) is continuously-differentiable under Assumption 2.6(i). Assumption 2.6(iv) is

introduced for expository purposes, and to account for the irregular spacing of the spatial data (Andrews,

1995). Indeed, due to the partial ordering of the bivariate index, and the economic interpretations of

y and p, it would not be appropriate to assume that, for instance, z1 = 1, . . . , n1 and z2 = 1, . . . , n2,

for some n1, n2 ∈ N, and develop an asymptotic theory for the situation in which n1 and n2 tend to

infinity at appropriate (relative) rates. Assumption 2.6(iv) can be relaxed in several ways. For example,

we could allow for weakly dependent drawings or deterministic regular designs.9 I do not consider such

extensions to avoid writing complicated technical conditions (see Robinson, 2011). In the application,

the support of π(·) is implicitly bounded, meaning that Assumption 2.6(v) is automatically satisfied as

long as x1(·) is continuous. The conditions on the kernels and the bandwidths are standard, and the

former are satisfied by “Gaussian” kernels.

Define κ ≡
∫
K2

1 (u)du
∫
K2

2 (u)du and σ2(z) ≡ V [X1(z)].

Proposition 2.4. Under Assumption 2.6:

√
nTh1h2

[
x̂1(z)− x1(z)

] d→ N

(
0, κ · σ

2(z)

π(z)

)
. (2.4.5)

Furthermore, x̂1(z) and x̂1(z̃) are asymptotically independent, whenever z 6= z̃.

Proof. See Robinson (2011).

When T = 1, we get independently and identically distributed observations (Xi(Zi), Zi), i = 1, . . . , n,

and the field aspect of demand has no effect. When T ≥ 2, quantities demanded by a given consumer

are linked. Fortunately, the Nadaraya-Watson estimator x̂(z) retains its consistency and asymptotic

normality under weak dependence. This result follows from the local nature of the estimator.

The asymptotic variance of the Nadaraya-Watson estimator x̂(z) involves the deterministic fields

σ2(z) and π(z). These deterministic fields can be estimated by kernel approaches to obtain pointwise

confidence bands for x1(z) such that:

x̂1(z)± 2√
nTh1h2

· σ̂(z)

π̂(z)1/2
. (2.4.6)

Uncertainty on Demand

Let us now consider how to estimate the uncertainty on the demand random field X(·). We focus on the

description of the estimation approach. Its asymptotic properties are beyond the scope of this chapter.

(i) Pairwise distributions of the demand random field: The distribution of the demand random

field X(·) is high-dimensional and difficult to estimate. However, it is rather easy to approximate

9Such extensions can affect the speed of convergence of the estimators, while keeping the asymptotic normality and the
expression of the asymptotic variance (see Theorem 4 in Robinson, 2011).



www.manaraa.com

Chapter 2. Revealed Stochastic Preference 133

Table 2.2. Pairs of indices for regression of Laplace transform when T = 4.

t s

1 2
1 3
1 4
2 3
2 4
3 4

its pairwise distributions. Let us consider the pairwise distribution of X1(z) and X1(z̃). This

distribution is characterized by its pairwise Laplace transform:

Ψz,z̃(v, ṽ) = E
[

exp {−vX1(z)− ṽX1(z̃)}
]
, (2.4.7)

= E
[

exp {−vX1(Zit)− ṽX1(Zis)}
∣∣Zit = z, Zis = z̃

]
, (2.4.8)

= E
[

exp {−vXi1t − ṽXi1s}
∣∣Zit = z, Zis = z̃

]
, (2.4.9)

where the equalities follow from the exogeneity of designs Zit and the assumption that preferences

(Mi) are constant across time. Notice the importance of a panel structure in this formula. Indeed,

this formula cannot be used with a single cross-section. When T ≥ 2, we can consistently estimate

this (conditional) Laplace transform using a Nadaraya-Watson estimator. When T = 2, this

procedure involves non-parametrically regressing exp{−vxi11 − ṽxi12} on (zi1, zi2); when T > 2,

this Laplace transform can be estimated by averaging the estimates from all pairs of dates. For

example, when T = 4, we can non-parametrically regress exp{−vxi1t − ṽxi1s} on (zit, zis) using

the six pairs of indices in Table 2.2 and take the average of all these estimates.

Remark 2.6. Some related literature (see Deaton and Muellbauer, 1980a, Blundell, Horowitz,

and Parey, 2017, and Blundell, Kristensen, and Matzkin, 2017), assumes that the observations

(Xit, Zit), i = 1, . . . , n and t = 1, . . . , T , are independent and identically distributed. When T > 1,

this assumption requires preferences to change randomly over time, making it impossible to identify

the pairwise distributions of X(·).

(ii) Distribution of the demand random field: As mentioned, we cannot expect to identify the

whole distribution of the demand random field X(·) with only a finite number of dates T , and

without any additional structure. Consequently, a Gaussian copula is introduced. This copula is

sufficient for identification because it ensures that the demand random field X(·) is characterized

by its pairwise distributions. By the arguments above, we can consistently estimate:

• The cumulative distribution function, say F (·; z), of X1(z);

• The transform Φ−1F (·; z), in which Φ is the standard normal cumulative distribution function;
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• The covariance operator of this transform:

C∗(z, z̃) = cov
[
Φ−1F (·; z),Φ−1F (·; z̃)

]
. (2.4.10)

Therefore, we can approximate the distribution of the demand random field X(·) by a distribution

with a Gaussian copula field. This approximation is such that the transform Φ−1F (·; z), z varying,

is a Gaussian random field with zero-mean and covariance operator C∗(·). Gaussian copulas make it

easy to simulate X(·). This estimator is consistent when the distribution of Φ−1F (·; z) is Gaussian,

as under a small-sigma assumption.

2.4.3 Distribution of the Marginal Rate of Substitution

I consider two estimation approaches for the distribution of the marginal rate of substitution random

field M(·), depending on whether errors are small or large. In the small-sigma framework (see Section

2.3.4), the impact of the “causal direction” can be neglected, allowing for the direct estimation of this

distribution. Else, the estimation of this distribution is indirect.

In the small-sigma framework, the random fields, M(·) and X(·), are approximately Gaussian, and

the estimators of µ(·), C(·), and (σ1, σ2) are consistent as n tends to infinity with fixed T , whenever

T ≥ 2, implying that the distribution of the marginal rate of substitution random field M(·) is identified.

A similar result holds in the general framework, whenever the approximation of the demand random

field X(·) in Section 2.4.2 is consistent.

The observational equivalence result in Hausman and Newey (2016a), implying that only one-

dimensional distributions of heterogeneity can be identified, does not apply because we have panel obser-

vations, allowing us to consider more than just the marginal distributions of the demand random field.

Small-Sigma Framework

The relationship in Assumption 2.3 implies that, when errors are small, the functional parameter µ(·)

can be estimated by non-parametrically regressing log pit on xit using the Nadaraya-Watson approach.

The consistency of this estimator holds under standard regularity conditions, as long as σ1 and σ2 tend

to zero at appropriate rates.10 It is left to estimate the covariance operator C(·) and the parameters

(σ1, σ2). This can be done by parameterizing Cj(·), and choosing the parameters that minimize the sum

of squared residuals.

Let us introduce the following assumption:

Assumption 2.7. The operator Cj(·) is parameterized by kj ∈ RLj , for each j = 1, 2.

10If σ1 and σ2 tend to zero very quickly, then we will also obtain a standard asymptotic result for this estimator.
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Under Assumption 2.7, the distribution of M(·) is characterized by the functional parameter µ(·),

and the scalar parameters θ = (k1, k2, σ1, σ2). Thus, after estimating µ(·), we can compute the residuals:

ε̂it = log pit − µ̂(xit), (2.4.11)

and choose θ to minimize:
n∑
i=1

∑
t≤s

[ε̂itε̂is − Cθ(xit − xis)]2 , (2.4.12)

in which Cθ(·) denotes the covariance operator for logM(·) given θ. This approach is consistent when

there exists a unique mapping between kj and Cj(·) over the range of demand. This approach is only

possible when the causal direction can be neglected. Assumption 2.7 makes estimation simple, but it

is not necessary (see Section 2.4.3). The asymptotics of the estimators above are straightforward and

omitted for brevity.

General Framework

The non-parametric estimation of the latent model is more difficult if the uncertainty on the marginal

rate of substitution random field M(·) is large. Once again, I focus on the description of the approach.

A non-parametric estimate of the distribution of the marginal rate of substitution random field

M(·) can be recovered by simulating from the estimated distribution of the demand random field X(·).

Consider the following steps:

Step 1: Estimate the marginal and pairwise distributions of X1(·), and then approximate the distribu-

tion of X1(·) using a Gaussian copula (see Section 2.4.2);

Step 2: Simulate the demand field: X̂s
1 =

{
X̂s

1(z), z varying
}

, for s = 1, . . . , S (see Appendix 2.D);

Step 3: Use (2.2.12) to deduce the marginal rate of substitution M̂s =
{
M̂s(x), xvarying

}
, for s =

1, . . . , S, and apply the log-transform to get log M̂s =
{

log M̂s(x), x varying
}

, for s = 1, . . . , S;

Step 4: Estimate the functional parameter µ(·) using:

µ̂∗(x) =
1

S

S∑
s=1

log M̂s(x), (2.4.13)

then approximate σj and Cj(·) with sample counterparts, computed by simulation, for j = 1, 2.

Testing the Small-Sigma Assumption

The arguments above elicit a question: Can we neglect the causal direction? There are several ways to

obtain an answer to this question. For example, we can compare the second component, say m̂(·), of

the inverse of the estimate x̂(·) of the expected demand field x(·) with the exponential transform of the
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estimate µ̂(·) of the functional parameter µ(·), obtained in the small-sigma framework. Alternatively,

we can compare the small-sigma estimate µ̂(·) with the general estimate µ̂∗(·). In either case, we can

neglect the causal direction if, and only if, the difference between these objects is small.

2.4.4 Filtering and Counterfactual Analysis

Once the random field model is estimated using one of the methods above, this model can be used for

filtering (i) the unobserved part of the individual demand X1i(z), (ii) the unobserved individual marginal

rate of substitution Mi(x), (iii) the unobserved individual errors Mi(x)−m(x) and their decomposition

in the direction of each good, and (iv) the unobserved individual indifference curves g(x, v). These

filtered curves have to be provided with their prediction bands. The filtering step requires a space (or

space-time) type of a Kalman-filter (see Wikle and Cressie, 1999). In order to apply the result in this

section, we first need to estimate expected demand and the distribution of marginal rate of substitution

(see Section 2.4.3).

Filtering is easy under the small-sigma assumption because all of the random fields are locally Gaus-

sian (see Proposition 2.3). Let us consider the prediction of the demand of consumer i at some coun-

terfactual value z. For this individual, we observe X1i(zit), for each t = 1, . . . T . By the independence

restriction in Assumption 2.5, X1i(zit), t = 1, . . . , T , is a sufficient statistic for predicting X1i(z), at any

counterfactual value z, and by Proposition 2.3(ii), the random field X1i(·) is locally Gaussian.

As a consequence, we obtain the following result:

Proposition 2.5. Under Assumptions 2.2 to 2.6, and S, the conditional distribution of X1i(z) given

X1i(zit), t = 1, . . . , T , is Gaussian with mean:

x1(z) + γ′Ω−1
[
X1i(zi1)− x1(zi1), . . . , X1i(ziT )− x1(ziT )

]′
, (2.4.14)

and variance V (X1i(z))− γ′Ω−1γ such that:

Ω = V ([X1i(zi1), . . . , X1i(ziT )]′)

γ = cov(X1i(z), [X1i(zi1), . . . , X1i(ziT )]′).
(2.4.15)

Proof. See Wikle and Cressie (1999).

The elements of the matrix Ω and vector γ have closed-form expressions in terms of the covariance

operators of U1(·) and U2(·). For instance:

Ωt,s = cov(X1i(zit), X1i(zis))

= pitpis∆x(zit)∆x(zis)
[
σ2

1C1(x1(zit), x1(zis)) + σ2
2C2(x2(zit), x2(zis))

]
.

(2.4.16)
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The distributional result in Proposition 2.5 can be directly used to construct prediction intervals for

counterfactual X1i(z) after replacing the scalar and functional parameters by their estimates. Clearly, the

approach in Proposition 2.5 can be extended to (i) the joint prediction of several counterfactual demands

X1i(z1), . . . , X1i(zJ), (ii) the construction of an impulse response function, δ 7→ X1i(ziT +δz)−X1i(ziT ),

(iii) the prediction of a counterfactual marginal rate of substitution Mi(·) using the joint expansions in

Proposition 2.3, or (iv) aggregate counterfactual analysis. When errors are not small, counterfactual

analysis can be performed by means of numerical methods.

2.5 Representative Consumer

The existence of a rational “representative consumer” is non-trivial. Indeed, a rational representative

consumer can fail to exist, even if every consumer is rational, and can exist, even if every consumer

violates rationality. An analysis of the representative consumer can be useful for constructing a simple

and coherent notion of consumer welfare, even if every consumer violates rationality (see Section 3.4 in

Blundell et al., 2003).

2.5.1 Definition

I define the representative consumer as the consumer whose demand field is the expected demand field

(see Gorman, 1953, Muellbauer, 1976, Grandmont, 1992, Hildenbrand, 1994, and Blundell et al., 2003,

for more information on this topic).11

This definition of a representative consumer differs from the definition in Gorman (1953) and Muell-

bauer (1976). In these papers, prices are constant across consumers, and the quantity demanded by the

representative consumer is defined to be the sum:

x̄jt ≡
n∑
i=1

xijt. (2.5.1)

In the current framework, this definition is not appropriate because prices vary significantly across

consumers in scanner data (see Section 2.6).

If the Slutsky coefficient ∆x(·) for the expected demand field x(·) is strictly negative, then this field

x(·) is a bona fide demand field, and it can be inverted to obtain the marginal rate of substitution m(·)

of a rational representative consumer.

In general, the marginal rate of substitution of the representative consumer m(·), obtained by invert-

ing the expected demand field (when possible), does not equal the expectation of the marginal rate of

11Gorman (1953) and Muellbauer (1976) assume that individuals are rational. In our framework, consumers are quasi-
rational. Therefore, our framework is closer to Grandmont (1992), Hildenbrand (1994), and Blundell et al. (2003).
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substitution field m̃(·). Because A(·) is non-linear:

E[Z] = E[invA(X)] 6= invA(E[X]) = invA(x),

x = E[X] = E[A(Z)] 6= A(E[Z]).
(2.5.2)

However, when σ1 and σ2 are small, these two functions are “close” (see Section 2.3.4).

Consider an example: f

Example 2.2 (Continued). Under the Stone-Geary specification in Example 2.2, defined by u(x) =

xα1x
1−α
2 , for some α ∈ (0, 1) and any x ∈ R̄:

logM(x) = log(x2)− log(x1) + λm + σ2U, (2.5.3)

where U is standard normal. By Proposition 2.2(ii), the mean of M(·) equals:

m̃(x) =
x2

x1
· eλm+σ2

2 , (2.5.4)

for each x ∈ R. For each realization of M(·), demand X1(·) solves:

y − pX1(z)

X1(z)
· eλm+σ2U − p = 0. (2.5.5)

This equation has a unique solution:

X1(z) =

(
eλm+σ2U

1 + eλm+σ2U

)
y

p
. (2.5.6)

Now, suppose λm = 0. Under this assumption, the term in parentheses has a (standard) logit-normal

distribution. Since U has zero-mean, the probability density function of this term is symmetric on (0, 1),

with a mean equal to 1/2. Therefore, we have:

x1(z) =
y

2p
, (2.5.7)

for each z ∈ R, so that the expected demand field x(·) coincides with the deterministic demand field

for the Stone-Geary specification with equal weights in Example 2.1. Let m(·) denote the marginal rate

of substitution field of this utility function. The fields, m̃(·) and m(·), coincide if the preferences are

deterministic such that σ2 = 0. Otherwise, there is a convexity bias:

m(x) =
x2

x1
6= x2

x1
· eσ

2

2 = m̃(x). (2.5.8)

4
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2.5.2 Preferences of the Representative Consumer

In the small-sigma framework, the preferences of the representative consumer can be recovered by apply-

ing the exponential transform to µ̂(·) because expµ(·) ' m(·). In the general framework, the expected

demand field x(·) needs to be inverted. I focus on the general estimation approach since the small-sigma

approach is straightforward. Let m̂(·) denote the second component of the generalized inverse of the

estimate x̂(·).

Define σ2
z(x) ≡ σ2(z(x)) and πz(x) ≡ π(z(x)).

Corollary 2.2. Under Assumptions 2.2 to 2.6, if ∆x(z) < 0, for any z ∈ invx(z), then:

√
nTh1h2

[
m̂(x)−m(x)

] d→ N

(
0, κ · σ

2
z(x)

πz(x)
·∆x(z(x))−2

)
. (2.5.9)

Proof. See Appendix 2.A.8.

Corollary 2.2 provides the asymptotic properties of the general estimator m̂(·) for the marginal rate of

substitution m(·) of the representative consumer, obtained by inverting the estimate x̂(·) of the expected

demand field x(·). The negativity of the Slutsky coefficient ∆x(z) guarantees the invertibility of x̂(·) in

an open neighbourhood of z.

2.5.3 Slutsky Coefficient

If we want to estimate the Slutsky coefficient ∆x(·), either for counterfactual analysis (see Section 2.4.4),

estimating the accuracy of m̂(·) (see Section 2.5.2), or testing the integrability of the expected demand

field x(·) (see Section 2.5.4), then we need estimators for the partial derivatives of x1(·), and the joint

asymptotic distribution of these estimators after an appropriate normalization. Historically, first-order

partial derivatives have been estimated by estimating the function x̂1(·), then evaluating ∂x̂1(z)/∂zi

(Vinod and Ullah, 1987; Ullah, 1988), or
[
x̂1(z + h) − x̂1(z)

]
/h, for a small value of h > 0 (Rilstone,

1985).12 These procedures are not appropriate in the current framework because we will eventually

require the joint asymptotic distribution of these estimators. Therefore, I propose the application of a

local quadratic fit.

The Nadaraya-Watson estimator x̂1(·) is the solution to the following weighted least squares opti-

mization problem:

x̂1(z) = argmin
a

n∑
i=1

T∑
t=1

[
1

h1
K1

(
z1it − z1

h1

)

· 1

h2
K2

(
z2it − z2

h2

)
(x1it − a)2

]
,

(2.5.10)

where x1(z) is locally approximated by some constant. This interpretation can be extended by consider-

ing a local approximation by a polynomial of degree 2 in the components of z, that is, a local quadratic

12A similar approach has been developed in Gasser and Müller (1984) for deterministic regressors.
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fit. This approach was initially introduced by Cleveland (1979). Then, the objective function becomes:

L(z|a, b, c) =

n∑
i=1

T∑
t=1

[
1

h1
K1

(
z1it − z1

h1

)
1

h2
K2

(
z2it − z2

h2

)

·

{
xit −

[
a+ b′

(
z1it − z1

z2it − z2

)
+

1

2

(
z1it − z1

z2it − z2

)′
c

(
z1it − z1

z2it − z2

)]}2 ]
,

(2.5.11)

where a is a scalar, b is a vector, and c is a positive symmetric matrix. The solutions, â(z), b̂(z), and

ĉ(z), of the resulting minimization problem estimate x1(z), ∂x1(z)/∂z, and ∂2x1(z)/∂z∂z′, respectively.

These non-parametric estimators are consistent estimators of their theoretical counterparts, with rates of

convergence that depend on the degree of differentiation (see Section 2.5.2, and Fan and Gijbels, 1992,

Ruppert and Wand, 1994, and Masry, 1996). After estimating these partial derivatives, the Slutsky

coefficient ∆x(·) can be estimated by:

∆̂x(z) ≡ b̂2(z) + â(z)b̂1(z). (2.5.12)

In the small-sigma framework, a similar approach can be used to estimate the coefficient ∆m(·). Other-

wise, the estimate ∆̂x(z) can be plugged into the expression in (2.2.11).

The application of a local quadratic fit has two advantages:

(i) This method is easy to implement.

(ii) It is known that the estimator â(z) differs from the Nadaraya-Watson estimator. It is equivalent

to the Nadaraya-Watson estimation at order (nTh1h2)−1/2, but is more efficient if we consider the

higher order terms. Hence, the local quadratic fit is more informative than the local constant fit.

Consider the following result:

Proposition 2.6. Under Assumptions 2.6 and C:

√
nTh1h2 ·D(h) ·




â(z)− x1(z)

b̂(z)− ∂x1(z)
∂z

vech ĉ(z)− vech ∂2x1(z)
∂z∂z′

−B(h, z)

 d→ N(0,Σ(z)), (2.5.13)

where D(h) = diag(1, h1h2, h
2
1h

2
2) and vech(·) denotes the operator stacking the distinct elements of a

symmetric matrix, B(h, z) denotes asymptotic bias, and Σ(z) denotes asymptotic variance.

Proof. See Appendix 2.C and Lu (1996) for additional details.

When appropriately normalized and bias adjusted, the local quadratic fit produces asymptotically

normal estimators. These estimators are asymptotically independent when the degrees of differentiation

differ—equivalently, when the rates of convergence differ (Lu, 1996). Proposition 2.6 needs an extra



www.manaraa.com

Chapter 2. Revealed Stochastic Preference 141

assumption, described in Appendix 2.C. Standard estimation methods for weighted least squares can be

used to estimate the variance-covariance matrix Σ(z).

By applying an appropriate version of the delta-method, we can also deduce the asymptotic behaviour

of the plug-in estimator ∆̂x(z) of the Slutsky coefficient ∆x(z), as defined in (2.5.12). The variability

of the estimator for the expected demand field x(·) can be neglected since it converges faster than the

estimators of its partial derivatives.

Corollary 2.3. Under Assumptions 2.2 to 2.6, and C:

√
nTh3

1h
3
2

[
∆̂x(z)−∆x(z)

]
d→ N

(
0,Σ33(z) + x1(z)2Σ22(z) + 2x1(z)Σ32(z)

)
, (2.5.14)

where Σjk(z) denotes the (j, k)th-entry of the (asymptotic) variance-covariance matrix Σ(z). Further-

more, ∆̂x(z) and ∆̂x(z̃) are asymptotically independent, whenever z 6= z̃.

Proof. See Appendix 2.C.

As expected, the plug-in estimator ∆̂x(z) of the Slutsky coefficient converges at a non-parametric

rate since it depends on the partial derivatives of x1(·). A similar asymptotic result can be obtained for

a direct estimator ∆̂m(·) of the coefficient ∆m(·).

2.5.4 Testing Integrability

We are now in a position to check the integrability of the expected demand field x(·). I consider a null

hypothesis of the form: H0,x = {∆x(z) < 0, ∀z ∈ Z}.13 Therefore, we need to test an uncountable set

of inequalities. This hypothesis is used to test an analogue of the moment inequalities in the revealed

preference literature with a small number of designs (Samuelson, 1938; Houthakker, 1950; Afriat, 1967).

Some sub-hypotheses can be tested at parametric rates, while others can only be checked at non-

parametric rates. Currently, it is not known how to simply put together test statistics converging at

different rates. To understand this difficulty, let us discuss some standard approaches:

(i) We can construct pointwise one-sided confidence bands for the Slutsky coefficient ∆x(·) using

the asymptotic distribution in Corollary 2.3, and check whether these bands are above zero. If

they contain zero, at some value of z ∈ Z, then optimizing behaviour cannot be accepted at z.

This approach can reveal the subset of designs Z∗ ⊆ Z on which integrability is accepted and its

complement on which it is not (see Dette et al., 2016, for an example of this type of approach,

and Section 2.6.4). This approach is easy to implement and informative on Z∗, but it is pointwise

(making it hard to control for type I error), and not very powerful in the current framework because

∆̂x(·) converges at a non-parametric rate.

13Alternatively, we could consider a null hypothesis of the form: H0,m = {∆m(x) > 0, ∀x ∈ X}.



www.manaraa.com

Chapter 2. Revealed Stochastic Preference 142

(ii) Alternatively, we can consider the hypothesis:

H′0,x =
{

sup
z∈Z

∆x(z) < 0
}
. (2.5.15)

This hypothesis leads to a test statistic with the form:

ξx = sup
z∈Z

∆̂x(z). (2.5.16)

This approach requires the derivation of the asymptotic distribution of ξx under the least favourable

distribution satisfying the null hypothesis (often by simulation). This approach has four drawbacks:

First, it can be difficult to precisely estimate the distribution of ξx because the joint distribution

of ∆̂x(z), z varying, is unknown. Second, if the null hypothesis is rejected, then we have no

information on the subset Z∗ ⊆ Z on which integrability is satisfied. Third, if H′0,x is accepted,

then H0,x is also accepted, but rejecting H′0,x does not imply that H0,x can be rejected. For

example, if Z = R and the utility function is Stone-Geary with equal weights (as in Example 2.1),

then ξx becomes:

ξx = sup
z∈Z
− y

4p2
= 0, (2.5.17)

even though ∆x(z) < 0 on Z. Finally, this test also has a problem with power.

(iii) A third approach consists of testing weak forms of integrability. The hypothesis H0,x is equivalent

to the following hypothesis:

{∫
Z ∆x(z)f(z)dz < 0, for any density f with bounded support

}
. (2.5.18)

Therefore, we can take a subset F = {f1(z), . . . , fJ(z)} of densities and consider:

H′′0,x(F) =
{∫
Z ∆x(z)fj(z)dz < 0,∀j = 1, . . . , J

}
. (2.5.19)

In other words, we can consider a sub-hypothesis consisting of moment inequality restrictions. If

H′′0,x(F) is rejected, then H0,x is also rejected. Note that, the asymptotic distribution derived in

Corollary 2.3 cannot be used directly. Indeed, by averaging the function ∆̂x(·) with an appropriate

choice for fj(·), we will obtain a parametric rate of convergence. A similar approach was applied

in Lewbel (1995) to test the symmetry of the Slutsky matrix (a necessary condition automatically

satisfied in our two good framework). This approach is conservative because it considers a finite

set of functions fj(·) (which can be extended to a larger family of functions if desired), but much

less conservative than the pointwise approach in Dette et al. (2016) because of the parametric

rate of convergence. A second advantage of this approach is to avoid differentiating the demand

field x(·) under an appropriate choice of F . To illustrate, let us consider one function fj(·) that is
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1

θj
u

θj − 1 θj + 1

fj

Figure 2.7. The drifted square of an Epanechnikov kernel.

continuously-differentiable with compact support satisfying separability:

fj(z) = f1j(y)f2j(p), (2.5.20)

where f1j(·) is non-negative and continuously-differentiable with support [
¯
y, ȳ] and f2j(·) is non-

negative and continuously-differentiable with support [
¯
p, p̄]. An example of such a function can be

deduced from the square of an Epanechnikov kernel (sometimes known as a biweight kernel) by

drifting the following function:

f(u) =
[
1− u2

]2
1|u|<1. (2.5.21)

This function has support [−1, 1] and its derivatives at ±1 are zero. The resulting drifted function

fij(u) = f(u − θij), u ∈ R, is non-negative and continuously-differentiable with support [θij −

1, θij + 1] (see Figure 2.7). If we consider the expression for ∆x(z) in (2.2.10) and the product

function in (2.5.20), then we obtain:

∫
∆x(z)fj(z)dz =

∫
∂x1(z)

∂p
fj(z)dz +

∫
x1(z)

∂x1(z)

∂y
fj(z)dz

=

∫∫
∂x1(z)

∂p
f1j(y)f2j(p)dydp+

1

2

∫∫
∂x2

1(z)

∂y
f1j(y)f2j(p)dydp.

(2.5.22)

Integrating by parts yields:

−
∫∫

x1(z)f1j(y)
df2j(p)

dp
dydp− 1

2

∫∫
x1(z)2 df1j(y)

dy
f2j(p)dydp. (2.5.23)

Therefore, instead of estimating this quantity by first estimating the partial derivatives of x1(·),

then using these derivatives to construct
∫

∆̂x(z)fj(z)dz, we can simply estimate the expected

demand field x(·) and plug its first component into (2.5.23). Finally, consider the difference between
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this estimator and its limit:∫ [
∆̂x(z)−∆x(z)

]
fj(z)dz = −

∫∫ [
x̂1(z)− x1(z)

]
f1j(y)

df2j(p)

dp
dydp

−1

2

∫∫ [
x̂1(z)2 − x1(z)2

]df1j(y)

dy
f2j(p)dydp.

(2.5.24)

This quantity approximately equals:

−
∫∫ [

x̂1(z)− x1(z)
] [
f1j(y)

df2j(p)

dp
+ x1(z)

df1j(y)

dy
f2j(p)

]
dydp. (2.5.25)

This quantity is a linear functional of the difference x̂1(z)−x1(z). It is known that, after applying

a partition of unity (to pass from local to global analysis) and standardizing by the parametric

rate 1/
√
nT , this integral is asymptotically normal, under some appropriate conditions on x1(·),

f1j(·), and f2j(·). This integral depends on fj(·), defining a Gaussian process with respect to this

function, as long as the moments exist (see Theorem 4 in Zinde-Walsh, 2018).

Define f(z) =
[
f1(z), . . . , fJ(z)

]′
.

Proposition 2.7. Under Assumptions 2.2 to 2.6:

√
nT

[∫
Z

∆̂x(z)f(z)dz −
∫
Z

∆x(z)f(z)dz

]
d→ N(0,Σ∗), (2.5.26)

where Σ∗ is a variance-covariance matrix whose (j, k)th-entry is equal to:

wjk =

∫
Z

σ2(z)

π(z)
Ψj(z)Ψk(z)dz, (2.5.27)

in which Ψj(z) has the following form:

Ψj(z) = f1j(y)
df2j(p)

dp
+ x1(z)

df1j(y)

dy
f2j(p). (2.5.28)

Proof. See Theorem 4 in Zinde-Walsh (2018).

The asymptotic variance-covariance matrix can be easily estimated by replacing x1(z), σ2(z), and

π(z) with their sample counterparts: x̂1(z), σ̂2(z), and π̂(z). The procedure to test a finite number

of inequality contraints is well-established (see Chapter 21 in Gouriéroux and Monfort, 1995, or

Andrews and Shi, 2013) and can be extended to an infinite number of inequality constraints if

desired. Theorem 2.7 implies that the asymptotic distribution of the integral in (2.5.26) does not

depend on the kernel K(·).
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2.6 Application to the Consumption of Alcohol

In this section, the approaches presented in the previous section are applied to an analysis of preferences

for different types of alcohol. I focus on estimation under the small-sigma assumption.

2.6.1 The Data

For this analysis, I use the Nielsen Homescan Consumer Panel (NHCP). Nielsen provides each household

in the NHCP with a barcode scanner. Households are asked to scan every packaged commodity that

they purchase. Prices are entered by the household or linked to retailer data by Nielsen. Households are

financially compensated for participation through benefits and lotteries, and self-select into participation.

This feature could create a self-selectivity bias that is neglected in the analysis below (see Appendix 2.B

for a discussion of the representativeness of the sample, and Chernozhukov et al., 2020, for an alternative

use of this dataset).

I focus on the consumption of alcoholic beverages. Beverages are grouped by type, as described in

Section 2.F. Good 1 contains beers and ciders.14 Good 2 contains wines and liquors. I omit non-alcoholic

beers, ciders, and wines. There are 30,635 types of beers and ciders, and 108,439 types of wines and

liquors, implying a total of 139,074 types of beverages.

All units are converted to litres, taking into account that some products are in packs of, say, six, or

twenty-four.15 For example, if a household buys two packs of six bottles of beer and each bottle contains

355 millilitres of beer, then it buys 4.26 litres of beer. The NHCP does not contain information about

alcohol by volume (ABV), but we could multiply the volume of the beverage in litres by the average ABV

for the type of drink (e.g., 4.5% for beer and cider, 11.6% for wine, and 37% for liquor) to diminish the

endogeneity of prices that can follow from the joint decision of quality and quantity (see Chernozhukov

et al., 2020, for a test of endogeneity, the discussion of context effects in Section 2.4.1, and Chapter 3

for an example of this practice). I do not make this adjustment, for simplicity.

I restrict our sample to purchases made in August to November of 2016. These months are consecu-

tive, and avoid several holidays with special alcohol consumption such as Independence Day, Christmas

Day, and New Year’s Eve.16 This window length also diminishes the impact of changing tastes and

product availability.

I aggregate each household’s purchases by month and restrict our sample to households with strictly

positive expenditure in each of the two goods in each month (see Section IV.A in Blundell et al., 2017,

for a similar assumption in an application to gasoline demand). This procedure leaves us a total of 773

households and 3,092 observations. The sample characteristics are provided in Appendix 2.B.

For each household and month, the price of an aggregate group is constructed by dividing total

14The NHCP classifies ciders as wine, by default. I reclassify these beverages using UPC product descriptions because
most ciders have a low Alcohol By Volume (ABV).

15Some units were manually coded—for example, a five litre Heineken mini-keg.
16Although, admittedly, this window still includes Thanksgiving Day.
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Table 2.3. Summary of expenditures, prices, and consumptions including the mean, standard deviation,
ratio of the standard deviation to the mean, and quantiles. Units are dollars per litre.

Quantiles

Variable Mean Std. Dev. Ratio 0% 25% 50% 75% 100%

ỹ 146.26 136.85 0.93 6.23 66.97 111.11 184.05 2767.76
p̃1 2.82 1.32 0.47 0.63 1.97 2.51 3.40 21.98
p̃2 10.13 7.27 0.71 0.70 5.33 8.29 12.59 124.95

y 19.56 22.13 1.13 0.33 7.19 13.26 24.54 354.05
p 0.38 0.28 0.74 0.02 0.20 0.31 0.49 6.17

x1 25.51 42.20 1.65 0.24 8.51 16.77 31.93 1080.81
x2 10.94 15.07 1.37 0.05 3.00 6.53 13.34 225.75

Figure 2.8. Sample distribution of normalized designs. On the left, colour indicates consumption of good
1. On the right, colour indicates a bivariate kernel density estimate.

expenditure in the group (after subtracting the value of coupons) by the litres purchased in the group, as

described in Appendix 2.F. Then, I normalize by the aggregate price of wine and liquor. To illustrate the

heterogeneity in expenditure and prices, summary statistics for these variables, pooled across households

and months, are provided in Table 2.3, and illustrate the sample distributions of these variables in Figure

2.8. On the left, we see that consumption of good 1 is approximately increasing in normalized expenditure

and decreasing in the normalized price, on average. On the right, we see that the sample distribution of

normalized designs zit is approximately log-normal.

2.6.2 Estimation of Demand

Let us now consider the estimation of the distribution of the demand random field X1(·). Figure 2.9

illustrates the Nadaraya-Watson estimate x̂1(·) of the expected demand field x1(·). In this figure, we
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Figure 2.9. Nadaraya-Watson estimate x̂1(·) of expected demand x1(·).

see that this estimate is strictly increasing in expenditure y and strictly decreasing in the price p, as

expected when goods are normal. The shape of this surface is similar to the shape of the Stone-Geary

demand function in Figure 2.2. Figure 2.10 illustrates the 95% confidence bands for this estimate. In this

figure, we see that the estimate is very precise for small values of expenditure, and that the confidence

bands widen as we increase expenditure. We also see that the estimate and the confidence bands are

decreasing in the price, as expected. Figure 2.11 illustrates the kernel estimate of one pairwise Laplace

transform of the demand random field. Of course, under a small-sigma assumption, the demand random

field is approximately Gaussian, implying that it is characterized by its pairwise distributions, which are

themselves characterized by their pairwise Laplace transforms. The explicit estimation of the covariance

operator of the Gaussian copula is omitted for brevity. Below, I estimate the covariance operator C(·) of

logM(·) under the small-sigma assumption, and the Slutsky coefficient ∆x(·). Together, these estimates

will lead to a natural estimate of the covariance operator CX(·) of X1(·), with the form in Corollary 2.1.

2.6.3 Estimation of Individual Preferences

Let us now consider the estimation of the distribution of individual preferences M(·) under the small-

sigma assumption. In this section, I first estimate µ(·), and then estimate the covariance operator C(·)

of logM(·) under two parametric assumptions.
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Figure 2.10. The 95% confidence bands for the Nadaraya-Watson estimate x̂1(·) of expected demand
x1(·) given p = 0.25 (left) and p = 0.50 (right). In each plot, the black line is the estimate of expected
demand, the green line is the upper bound, and the blue line is the lower bound.

Figure 2.11. Nadaraya-Watson estimate of the pairwise Laplace transform of the demand random field
given z = (10, 0.25) and z̃ = (10, 0.75).
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Figure 2.12. Nadaraya-Watson estimate µ̂(·) (left) and its exponential transform (right).

Estimation of the Mean

Under the small-sigma assumption, the functional parameter µ(·) can be estimated using the Nadaraya-

Watson approach, as described in Section 2.4.3. The resulting estimate µ̂(·) is illustrated on the left of

Figure 2.12. By applying the exponential transform exp(·) to this estimated field, we obtain an estimate

for the expected marginal rate of substitution field m̃(·). The transformed estimate exp µ̂(·) is illustrated

on the right of Figure 2.12.

Estimation of the Covariance Operator

Next, consider the estimation of the covariance operator C(·) of logM(·). Since we have already esti-

mated the functional parameter µ(·), we are left with the task of estimating θ = (σ1, σ2, k1, k2)′, where kj

denotes the vector of parameters that characterize the covariance operator Cj(·) of Uj(·). In this section,

I consider two parameterizations of C(·). In the first parameterization, I use Ornstein-Uhlenbeck errors:

Cj(x, x̃) = exp
{
− kj |xj − x̃j |

}
, (2.6.1)

and, in the second parameterization, I use squared-exponential errors:

Cj(x, x̃) = exp
{
− kj |xj − x̃j |2

}
. (2.6.2)

The results are provided in Table 2.4. In this table, we see that σ̂1 is approximately 0.38, and σ̂2 is

approximately 0.44, regardless of the parameterization. These estimates are mostly consistent with the
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Table 2.4. Estimated parameters θ̂ under Ornstein-Uhlenbeck errors and squared-exponential errors.

Ornstein-Uhlenbeck Squared Exponential

σ1 0.3797 0.3875
σ2 0.4426 0.4344
k1 10.1283 20.9043
k2 125.3043 27.1795

Figure 2.13. Estimated covariance operator C(·) of logM(·) under Ornstein-Uhlenbeck errors (black)
and squared-exponential errors (blue) given x = (25, 10) and x̃ = (x̃1, 10), with x̃1 varying.

small-sigma assumption: √
σ̂2

1 + σ̂2
2 '

√
0.382 + 0.442 = 0.5813. (2.6.3)

In this table, we also see that k̂1 is smaller than k̂2, regardless of the parameterization. Since, in each

parameterization, kj is a measure of dependency across quantities for good j, this result suggests that

shocks to preferences for beer are less persistent across quantities than shocks to preferences for wine

and liquor. Therefore, consumers are prone to liking or disliking wine and liquor at all quantities, but we

cannot make a similar claim for beer. The estimated covariance operators are illustrated in Figure 2.13.

2.6.4 Estimation of the Slutsky Coefficient

The estimate of the (functional) Slutsky coefficient, based on a local quadratic fit, is illustrated on the

left of Figure 2.14. For comparison, the Slutsky coefficient associated with a Stone-Geary specification is
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Figure 2.14. The estimated Slutsky coefficient (left) and the Stone-Geary Slutsky coefficient given
α = 3/4 (right).

given on the right. Both surfaces are relatively flat over the majority of the range of designs with a large

decrease in the corner associated with large expenditures and small prices. Since the strict negativity

of the Slutsky coefficient is both necessary and sufficient for integrability, this estimate can be used to

evaluate the recoverability of the marginal rate of substitution m(·) associated with expected demand

x1(·) without a small-sigma assumption. Figure 2.15 illustrates the set on which the estimated Slutsky

coefficient is negative.

2.6.5 Counterfactual Analysis

Now that we have estimated the expected demand field x1(·), the covariance operator C(·) of logM(·),

and the Slutsky coefficient ∆x(·), we can perform individual-level counterfactual analysis under the small-

sigma assumption. Figure 2.16 illustrates the counterfactual prediction with 95% confidence bands for a

specific household under Ornstein-Uhlenbeck errors and squared-exponential errors. In each panel, the

price has been fixed at p = 0.0693, and the red point denotes the observed consumption of this household

in August of 2016 given zit = (7.7612, 0.0693). We see that, regardless of the parameterization of C(·), (i)

the prediction passes through this point, (ii) the prediction tends to the estimated expected demand field

as we move away from this point, and (iii) the width of the confidence bands tends to zero at this point.

Intuitively, the conditional distribution of X1i(·) at zit is degenerate because we observe xi1t = X1i(zit).

2.7 Concluding Remarks and Further Extensions

This chapter develops a non-parametric model of consumption for scanner data without the issues associ-

ated with applying traditional approaches, such as the assumptions of separability, finite-dimensional het-
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Figure 2.15. The set on which the estimated Slutsky coefficient is strictly negative.

Figure 2.16. Counterfactual prediction with 95% confidence bands for a specific household given p =
0.0693 under Ornstein-Uhlenbeck errors (left) and squared-exponential errors (right). The dashed line
is the estimated expected demand field x̂1(·), the black line is the mean of the distribution of X1i(·), the
blue line is the lower bound, the green line is the upper bound, and the red point is one observation for
this household.
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erogeneity, or monotonicity. Infinite-dimensional heterogeneity is introduced by replacing the marginal

rate of substitution with a log-normal random field. This model is used to recover the latent distribution

of preferences in the population, perform counterfactual analysis, test the integrability of the expected

demand field at a parametric rate, and recover the preferences associated with this field. If variation in

preferences is small, preferences can be recovered by approximating the relationship between demand

and preferences using a first-order expansion. Else, preferences can be recovered numerically. Finally, I

use the Nielsen Homescan Consumer Panel (NHCP) to illustrate these methods in an application to the

consumption of alcohol.

There are several natural extensions to the model in this chapter: First, we could permit more

general forms of heterogeneity by relaxing the additive separability of the error term in the construction

of the marginal rate of substitution random field, or by replacing the log-normal random field with a

more general process. Second, if we wanted every realization of the marginal rate of subsitution to be

the marginal rate of substitution associated with some well-behaved utility function, without imposing

any additional restrictions on heterogeneity, we could attempt to characterize the subset of processes

that satisfy this restriction. Third, I do not currently permit corner solutions, intertemporal decisions,

context effects, or endogenous designs, beyond what presents itself as weak dependence. Some of these

features will be addressed in the subsequent chapter.

2.A Proofs

2.A.1 Proof of Lemma 2.1

By Proposition 7 in Ginsberg (1973), Theorem 5 in Arrow and Enthoven (1961), and Theorem 11.2 in

Barten and Böhm (1993), the properties in (i) and (iii) are equivalent. Hence, it is sufficient to show

that (ii) is equivalent to (iii) which is equivalent to (iv).

The determinant of the bordered Hessian is:

∆u(x) = 2u1u2u12 − u2
1u22 − u2

2u11, (2.A.1)

where ui = ui(x). Moreover:
d2g(x1, u)

dx2
1

= ∆m(x) =
1

u3
2

∆u(x), (2.A.2)

where x2 = g(x1, v). The result follows from the strict positivity of u2 and the fact that, for every x ∈ R,

there exists some v ∈ R that satisfies x2 = g(x1, v).
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2.A.2 Single-Valued and Continuously-Differentiable Demand

If a quantity x1 > 0 satisfies (2.2.9) given z ∈ R, then:

dm

dx1
(x1, y − px1) =

∂m

∂x1
(x)−m(x)

∂m

∂x2
(x) = −∆m(x). (2.A.3)

This derivative is strictly negative by Lemma 2.1. Consequently, the implicit function theorem implies

that there exists an open set U containing z0 ∈ R, and a unique and continuously-differentiable implicit

function x∗1(·) on U that satisfies:

x∗1(z0) = x1 and m(x∗1(z), y − px∗1(z))− p = 0, (2.A.4)

for every z ∈ U . This solution can be extended to R, if x∗1(z) is the only quantity that satisfies (2.2.9)

given z. Suppose that there exists another quantity x∗1 < x∗1(z) that satisfies (2.2.9) given z, and define:

γ(t) = m
[
tx∗1 + (1− t)x∗1(z), y − p(tx1 + (1− t)x∗1(z))

]
− p, (2.A.5)

for t ∈ [0, 1].17 This function satisfies γ(t1) < 0 < γ(t0), for some t0 < t1, since:

(i) x1 and x∗1(z) satisfy (2.2.9) given z

(ii) γ(t) is continuous

(iii) the derivative in (2.A.3) is strictly negative at every x1 > 0 that satisfies (2.2.9).

Therefore, the intermediate value theorem implies that there exists t∗ ∈ (t0, t1) such that γ(t∗) = 0

and γ′(t∗) ≤ 0. However, γ′(t∗) ≤ 0 implies that there exists x1 6= x1(z) that satisfies (2.2.9), but

fails to satisfy (2.A.3), generating a contradiction. See Figure 2.17 for an illustration. This use of the

intermediate value theorem is specific to the two good framework. Otherwise, more complex arguments

are required (see, for example, Gale and Nikaidô, 1965, and Mas-Colell, 1979).

2.A.3 Slutsky Matrix Properties

The (i, j)th-entry of the 2-by-2 Slutsky matrix is defined by:

Sij(z̃) ≡
∂x̃i
∂p̃j

(z̃) + x̃j(z̃)
∂x̃i
∂ỹ

(z̃), (2.A.6)

in which z̃ = (p̃1, p̃2, ỹ) ∈ R3
++, and x̃(·) denotes the demand field as a function of z̃, prior to any

normalizations. I show that, if x̃(·) is homogeneous of degree zero, and it satisfies Walras’ law, then, in

the two good framework: (i) the Slutsky matrix is symmetric, (ii) ∆x(z) ≤ 0 if, and only if, the Slutsky

17The assumption that x∗1 < x∗1(z) is without loss of generality.
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Figure 2.17. The intuition in the proof of continuous-differentiability.

matrix is negative semi-definite, and (iii) ∆x(z) < 0 implies that the Slutsky matrix has exactly one

strictly negative eigenvalue.

(i) Symmetry: Symmetry holds if, and only if:

∂x̃1

∂p̃2
(z̃) + x̃2(z̃)

∂x̃1

∂ỹ
(z̃) =

∂x̃2

∂p̃1
(z̃) + x̃1(z̃)

∂x̃2

∂ỹ
(z̃). (2.A.7)

By Walras’ law, we have:

x̃2(z̃) =
ỹ − p̃1x̃1(z̃)

p̃2
. (2.A.8)

Now, by replacing x̃2(z̃) in (2.A.7) and rearranging, we get:

∂x̃1

∂p̃2
(z̃) +

ỹ

p̃2

∂x̃1

∂ỹ
(z̃) = − p̃1

p̃2

∂x̃1

∂p̃1
(z̃). (2.A.9)

As a consequence, the Slutsky martix is symmetric if, and only if, this equality holds, or equiva-

lently, if, and only if:

p̃1
∂x̃1

∂p̃1
(z̃) + p̃2

∂x̃1

∂p̃2
(z̃) + ỹ

∂x̃1

∂ỹ
(z̃) = 0. (2.A.10)

This equality is satisfied by Euler’s Theorem for homogeneous functions.

(ii) Negative Semi-Definiteness: The homogeneity of demand x̃(·) implies that the Slutsky matrix

is singular. Therefore, the rank of the Slutsky matrix is strictly smaller than two, and it has at

least one eigenvalue that is equal to zero. Since the Slutsky matrix is symmetric by (i), the other

eigenvalue is equal to the trace of the Slutsky matrix:

∂x̃1

∂p̃1
(z̃) + x̃1(z̃)

∂x̃1

∂ỹ
(z̃) +

∂x̃2

∂p̃2
(z̃) + x̃2(z̃)

∂x̃2

∂ỹ
(z̃). (2.A.11)

By applying (2.A.8), this trace is weakly less than zero if, and only if:

(
1 + p2

) [∂x1

∂p
(z) + x1(z)

∂x1

∂y

]
≤ 0. (2.A.12)
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Equivalently, if, and only if, ∆x(z) ≤ 0. Because a symmetric matrix is negative semi-definite if,

and only if, all of its eigenvalues are non-positive, the Slutsky matrix is negative semi-definite if,

and only if, ∆x(z) ≤ 0.

(iii) Negative Eigenvalue: By the argument above, if ∆x(z) < 0, the trace of the Slutsky matrix is

strictly negative, and one eigenvalue is strictly negative.

2.A.4 Proof of Proposition 2.1

Properties (i) and (ii) follow from Lemma 2.2. The proof is similar to the proof in Appendix 2.A.2. Let

us now consider property (iii). The Jacobian of the demand field x(·) is:

Jx(z) =

 ∂x1

∂y (z) ∂x1

∂p (z)

∂x2

∂y (z) ∂x2

∂p (z)

 . (2.A.13)

By Walras’ law:

Jx(z) =

 ∂x1

∂y (z) ∂x1

∂p (z)

1− p∂x1

∂y (z) −x1(z)− p∂x1

∂p (z)

 . (2.A.14)

The determinant of this matrix is −∆x(z). Similarly, the Jacobian of the inverse demand function z(·)

is defined by:

Jz(x) =

 ∂y
∂x1

(x) ∂y
∂x2

(x)

∂p
∂x1

(x) ∂p
∂x2

(x)

 . (2.A.15)

Again, by Walras’ law:

Jz(x) =

 x1
∂p
∂x1

(x) + p(x) x1
∂p
∂x2

(x) + 1

∂p
∂x1

(x) ∂p
∂x2

(x)

 . (2.A.16)

Since, under Assumption 2.1, we have: m(x) = p(x), for every x ∈ R, the determinant of this matrix

is ∆m(x), and the determinant of its inverse is ∆m(x)−1. The remainder of the proof follows from the

inverse function theorem.

2.A.5 Proof of Theorem 2.1

Part (i) follows directly from Proposition 2.1(i). Part (ii) follows from (a) the Picard-Lindelöf theorem,

(b) the fact that, under Assumption A, the solution to the differential equation in (2.2.2) subject to

g(x∗1, u) = x∗2 can be analytically extended to the boundary of X , and (c) the fact that, by the continuity

of the indifference curves, we can extend our knowledge of each indifference curve over some open set to

its closure.
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2.A.6 Proof of Proposition 2.2

(i) The random field M(·) is log-normal because logM(·) is Gaussian.

(ii) By applying the Laplace transform of a Gaussian distribution, we obtain:

m̃(x) = E[exp{logM(x)}] = exp
{
E[logM(x)] +

1

2
V [logM(x)]

}
. (2.A.17)

(iii) Define: γ(x, x̃) = exp
{
µ(x) + µ(x̃)

}
. By applying the Laplace transform again:

E[M(x)M(x̃)] = γ(x, x̃)E
[

exp
{
σ1U1(x1) + σ2U2(x2) + σ1U1(x̃1) + σ2U2(x̃2)

}]
= γ(x, x̃) exp

{1

2
V
[
σ1U1(x1) + σ2U2(x2) + σ1U1(x̃1) + σ2U2(x̃2)

]}
= γ(x, x̃) exp

{
σ2

1 + σ2
2

}
exp

{
C(x, x̃)

}
.

(2.A.18)

Similarly, we can write:

E[M(x)]E[M(x̃)] = γ(x, x̃) exp
{
σ2

1 + σ2
2

}
. (2.A.19)

Together, these results yield the form of CM (·) in (2.3.5).

2.A.7 Proof of Proposition 2.3

(i) By performing a first-order expansion, we get:

M(x) = exp
{

logM(x)
}

= exp
{
µ(x) + σ1U1(x1) + σ2U2(x2)

}
= exp

{
µ(x)

}
exp

{
σ1U1(x1) + σ2U2(x2)

}
= exp

{
µ(x)

}[
1 + σ1U1(x1) + σ2U2(x2)

]
+ o(σ)

= m(x) +m(x)
[
σ1U1(x1) + σ2U2(x2)

]
+ o(σ).

(2.A.20)

Since U1(·) and U2(·) are Gaussian processes, the random field M(·) is approximately Gaussian.

(ii) The effect on M(·) of a small perturbation of X1(·) is:

δM
[
x(z)

]
=

[
∂m

∂x1
(x(z))− p ∂m

∂x2
(x(z))

]
δX1(z) = ∆m

[
x(z)

]
δX1(z). (2.A.21)

Therefore, we obtain:

δX1(z) = ∆m

[
x(z)

]−1
δM
[
x(z)

]
= −∆x(z)δM

[
x(z)

]
, (2.A.22)
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and we can deduce the following small-sigma approximation of X1(·):

X1(z) = x1(z) + δX1(z)

= x1(z)−∆x(z)δM(x(z))

= x1(z)−∆x(z)
{
m(x(z))

[
σ1U1(x1(z)) + σ2U2(x2(z))

]
+ o(σ)

}
= x1(z)− p∆x(z)

[
σ1U1(x1(z)) + σ2U2(x2(z))

]
+ o(σ).

(2.A.23)

Consequently, the demand field is approximately Gaussian.

(iii) If M(·) is continuously-differentiable, then G0(·, v) is well-defined by the Picard-Lindelöf theorem.

If σ1 = σ2 = 0, then G0(x1, v) = g0(x1, v). We are, therefore, looking for an expansion of G0(·, v)

with the form:

G0(x1, v) = g0(x1, v) + h0(x1, v;σ, U1, U2) + o(σ), (2.A.24)

where h0(x10, u;σ, U1, U2) = 0. By differentiating with respect to x1, we obtain:

∂G0(x1, v)

∂x1
= −M(x1, G0(x1, v))

= −m(x1, g0(x1, v))− ∂m

∂x2

[
x1, g0(x1, v)

]
h0(x1, v;σ, U1, U2)

+m(x1, g0(x1, v))
[
σ1U1(x1) + σ2U2(g0(x1, v))

]
+ o(σ).

(2.A.25)

By (2.A.24) and the definition of g0(x1, v), we deduce:

∂h0(x1, v;σ, U1, U2)

∂x1
= − ∂m

∂x2

[
x1, g0(x1, v)

]
h0(x1, v;σ, U1, U2)

+m(x1, g0(x1, v))
[
σ1U1(x1) + σ2U2(g0(x1, v))

]
.

(2.A.26)

With the initial condition h0(x10, v;σ, U1, U2) = 0, this differential equation has a unique solution.

We are, therefore, left with the form in part (iii).

2.A.8 Proof of Corollary 2.2

By Proposition 2.4, applying the delta-method yields:

√
nTh1h2

[
x̂(z)− x(z)

] d→ N

(
0, κ

σ2(z)

π(z)

(
1 −p
−p p2

))
. (2.A.27)

Since ∆x(z) 6= 0 coincides with the determinant of the Jacobian of expected demand, the inverse function

theorem implies that expected demand is invertible in a neighbourhood of z. Because z(x(z)) = z and
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m(x) = p(x), applying the delta-method a second time yields:

√
nTh1h2

[
ẑ(x)− z(x)

] d→ N

(
0, κ

σ2
z(x)

πz(x)
Jz(x)

(
1 −m(x)

−m(x) m(x)2

)
Jz(x)′

)
. (2.A.28)

where Jz(x) denotes the Jacobian of z(·). Thus, the second component of z(·) satisfies:

√
nTh1h2 [m̂(x)−m(x)]

d→ N

(
0, κ

σ2
z(x)

πz(x)

[
∂m(x)

∂x1
−m(x)

∂m(x)

∂x2

]2
)

(2.A.29)

The result follows because the expression in the parentheses is equal to the negative of ∆m(x), and

Proposition 2.1(iii) implies ∆m(x) = −∆x(z(x))−1.

2.B Summary Statistics

In this appendix, I summarize some demographics of the households in the Nielsen Homescan Consumer

Panel (NHCP), after restricting our sample to households with strictly positive expenditure in each

of the two aggregate groups of alcoholic beverages in each month from August to November in 2016.

While the NHCP sample is balanced to reflect the population of households in the United States by

household size, income, age, education, and race, the selected sample may not be balanced. I compare

the demographics in the selected NHCP sample to the Current Population Survey (CPS). I refer the

reader to Guha and Ng (2019) for additional summary statistics.

Table 2.5 describes the distribution of household size in the selected sample and the CPS. The major-

ity of households in the selected NHCP sample have two members. The shape of the size distribution in

the selected sample is similar to the shape of the size distribution in the CPS, with a smaller proportion

of one-member households, and a larger proportion of two-member households. This difference could be

explained by (i) one-member households having difficulty meeting the required level of spending to be

included in the selected sample, or (ii) two-member households being more likely to consume alcohol in

both aggregate groups.
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Table 2.5. Household size in the selected NHCP sample and the 2017 Annual Social and Economic
Supplement (ASEC) of the CPS. CPS numbers are in thousands.

Sample CPS

Size Number Proportion Number Proportion

1 122 0.1578 35,388 0.2812

2 442 0.5717 42,785 0.3400

3 112 0.1448 19,423 0.1543

4 69 0.0892 16,267 0.1292

5 18 0.0232 7,548 0.0599

6 6 0.0077 2,813 0.0223

7+ 4 0.0051 1,596 0.0126

Total 773 1.0000 125,819 1.0000

Table 2.6 describes the distribution of household size in the selected NHCP sample and the CPS.

These two distributions are similar. The only noticable difference is at the upper tail: The selected

sample includes a higher proportion of households earning $70,000 to $99,999, and a smaller proportion

of households earning $100,000 or more.
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Table 2.6. Annual household income in the selected NHCP sample and the 2017 Annual Social and
Economic Supplement (ASEC) of the CPS. CPS numbers are in thousands.

Sample CPS

Income Number Proportion Number Proportion

Under $5,000 10 0.0129 4,138 0.0327

$5,000 to $9,999 9 0.0116 3,878 0.0307

$10,000 to $14,999 17 0.0219 6,122 0.0485

$15,000 to $19,999 25 0.0323 5,838 0.0462

$20,000 to $24,999 35 0.0452 6,245 0.0494

$25,000 to $29,999 41 0.0530 5,939 0.0470

$30,000 to $34,999 45 0.0582 5,919 0.0468

$35,000 to $39,999 38 0.0491 5,727 0.0453

$40,000 to $44,999 32 0.0413 5,487 0.0434

$45,000 to $49,999 35 0.0452 5,089 0.0403

$50,000 to $59,999 92 0.1190 9,417 0.0746

$60,000 to $69,999 55 0.0711 8,213 0.0650

$70,000 to $99,999 169 0.2186 19,249 0.1524

$100,000+ 170 0.2199 34,963 0.2769

Total 773 1.0000 126,224 1.0000

Tables 2.7 and 2.8 describe the distribution of the age of the head of the household in the selected

NHCP sample and the householder in the CPS. I provide two tables because there is no direct comparison

between the samples. Indeed, the NHCP reports the age of the household head, separated by gender,

while the CPS reports the age of the householder, the person that owns or leases the residence. Table

2.7 compares the distribution of the age of the eldest household head in the selected sample with the

age of the householder in the CPS. The age of the eldest head in the selected sample is much more

concentrated around the ages of 50 to 74. This result might be driven by the fact that, by definition,

the eldest head is always (at least weakly) older than the householder, but this result persists in Table

2.8, in which the selected sample is separated by gender.
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Table 2.7. Age of eldest household head in the selected NHCP sample and the householder in the 2017
Annual Social and Economic Supplement (ASEC) of the CPS. CPS numbers are in thousands.

Sample CPS

Age Number Proportion Number Proportion

Under 20 0 0.0000 753 0.0059

20 to 24 2 0.0025 5,608 0.0445

25 to 29 4 0.0051 9,453 0.0751

30 to 34 24 0.0310 10,594 0.0842

35 to 39 33 0.0426 10,651 0.0846

40 to 44 35 0.0452 10,571 0.0840

45 to 49 44 0.0569 11,115 0.0883

50 to 54 81 0.1047 12,180 0.0968

55 to 64 271 0.3505 23,896 0.1899

65 to 74 222 0.2871 17,551 0.1394

75+ 57 0.0737 13,448 0.1068

Total 773 1.0000 125,819 1.0000
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Table 2.8. Age of household head by gender in the selected NHCP sample and the householder in the
2017 Annual Social and Economic Supplement (ASEC) of the CPS. CPS numbers are in thousands.

Male Female CPS

Age Number Proportion Number Proportion Number Proportion

Under 20 0 0.0000 0 0.0000 753 0.0059

20 to 24 1 0.0014 2 0.0029 5,608 0.0445

25 to 29 6 0.0089 8 0.0118 9,453 0.0751

30 to 34 21 0.0313 30 0.0443 10,594 0.0842

35 to 39 29 0.0433 39 0.0576 10,651 0.0846

40 to 44 35 0.0523 29 0.0428 10,571 0.0840

45 to 49 42 0.0627 49 0.0724 11,115 0.0883

50 to 54 75 0.1121 97 0.1434 12,180 0.0968

55 to 64 240 0.3587 233 0.3446 23,896 0.1899

65 to 74 172 0.2571 159 0.2352 17,551 0.1394

75+ 48 0.0717 30 0.0443 13,448 0.1068

Total 669 1.0000 676 1.0000 125,819 1.0000

Table 2.9 describes the distribution of the marital status of the head of the household in the selected

NHCP sample and the marital status of people aged 15 and over in the CPS. We observe a higher

proportion of married households and a lower proportion of single households. This result is consistent

with the fact that we observe a smaller proportion of one-member households, and a larger proportion

of two-member households. These samples have approximately the same proportions of widowed and

divorced/separated households.

Table 2.9. Marital status of the head of the household in the selected NHCP sample and the marital
status of people aged 15 and over in the 2017 Annual Social and Economic Supplement (ASEC) of the
CPS. CPS numbers are in thousands.

Sample CPS

Marital Status Number Proportion Number Proportion

Married 588 0.7606 130,606 0.5041

Widowed 34 0.0439 14,919 0.0575

Divorced/Separated 79 0.1021 30,626 0.1182

Single 72 0.0931 82,912 0.3200

Total 773 1.0000 259,063 1.0000
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Table 2.10 describes the distribution of the (self-reported) racial identity of household in the selected

NHCP sample and the race of the householder in the CPS. Table 2.10 uses the categories in the NHCP.

The CPS categories are (i) White Alone, (ii) White Alone (Non-Hispanic), (iii) Black Alone, (iv) Asian

Alone, and (v) Hispanic (Any Race). Unclassified observations in the CPS are in a sixth category:

Other. I reclassify category (ii) as White/Caucasian, category (iii) as Black/African American, and

category (iv) as Asian, then classify the remaining households as Other. I observe a higher proportion

of White/Caucasian households.

Table 2.10. Racial identity of household in the selected NHCP sample and the race of the householder in
the 2017 Annual Social and Economic Supplement (ASEC) of the CPS. CPS numbers are in thousands.

Sample CPS

Race Number Proportion Number Proportion

White/Caucasian 640 0.8279 84,387 0.6685

Black/African American 77 0.0996 16,733 0.1325

Asian 14 0.0181 6,392 0.0506

Other 42 0.0543 18,712 0.1482

Total 773 1.0000 126,224 1.0000

Table 2.11 describes the employment status of the head of the household in the selected NHCP

sample by gender and the employment status of people in the CPS. The No Head category characterizes

households in the selected sample that do not have a male or female head, as reported by the panelist.

I reclassify households in the CPS that are employed, but not “at work,” as Unemployed. We observe a

lower proportion of households working at least 35 hours a week and a higher proportion of unemployed

households.
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Table 2.11. Employment status of the head of the household in the selected NHCP sample by gender
and employment status of people aged 16 and over in the 2017 Labor Force Statistics from the CPS.
CPS numbers are in thousands.

Male Female CPS

Weekly Hours Number Proportion Number Proportion Number Proportion

Under 30 52 0.0672 87 0.1125 24,163 0.1507

30 to 34 16 0.0206 35 0.0452 10,916 0.0680

35+ 346 0.4476 238 0.3078 112,651 0.7026

Unemployed 255 0.3298 316 0.4087 12,590 0.0785

No Head 104 0.1345 97 0.1254 - -

Total 773 1.0000 773 1.0000 160,320 1.0000

Table 2.12 describes the educational attainment of the head of the household in the selected NHCP

sample by gender and the educational attainment of people in the CPS. Once again, the No Head

category characterizes households in the selected sample that do not have a male or female head. We

observe a higher proportion of households with some college and a lower proportion of households with

at least a college diploma.

Table 2.12. Educational attainment of the head of the household in the selected NHCP sample by
gender and educational attainment of people aged 18 and over in the 2017 Annual Social and Economic
Supplement (ASEC) of the CPS. CPS numbers are in thousands.

Male Female CPS

Education Number Proportion Number Proportion Number Proportion

Grade School 8 0.0103 1 0.0012 9,187 0.0372

Some HS 32 0.0413 10 0.0129 17,996 0.0730

HS Grad. 178 0.2302 198 0.2561 71,170 0.2889

Some Coll. 192 0.2483 220 0.2846 46,445 0.1885

Coll. Grad. 186 0.2406 166 0.2147 73,439 0.2981

Post-Coll. Grad. 73 0.0944 81 0.1047 7,292 0.0296

No Head 104 0.1345 97 0.1254 - -

Total 773 1.0000 773 1.0000 246,325 1.0000

HS: High school; Coll: College.
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2.C Local Quadratic Fit

In this appendix, I provide the technical conditions that are needed to estimate the partial derivatives

of expected demand x1(·). The following discussion follows from Theorem 4 in Section 4 in Lu (1996).

As in the main text, let â(z), b̂(z), and ĉ(z) denote the arguments that minimize the objective function

in (2.5.11). Let σ2
0(·) denote the conditional variance of X1(Z) given Z. Then, we obtain:

X1(Z) = x1(Z) + σ0(Z)e, (2.C.1)

in which E(e|Z) = 0 and V (e|Z) = 1. This framework is the “random design” model on page 188 of Lu

(1996).

The main regularity conditions are the following:

Assumption C.

(i) There exists δ > 0 such that E|X1(Z)|2+δ <∞.

(ii) The kernel function K(·) is a spherically symmetric density function.

(iii) The kernel function K(·) has its 12th-power marginal moment:

∫
u12
j K(u1, u2)du1du2 <∞, (2.C.2)

for each j = 1, 2.

(iv) The fourth derivative of expected demand x1(·) is continuous on R.

(v) The density π(·) is continuously-differentiable on R.

(vi) The conditional variance σ2
0(·) is continuous on R.

Assumption C is the additional assumption that we need to estimate the partial derivatives of ex-

pected demand x1(·) using the local quadratic fit described in Section 2.5.3 (see Theorem 4 in Lu, 1996).

The explicit expressions of B(h, z) and Σ(z) are omitted for brevity, but can be found in Theorem 3 of

Lu (1996).

2.D Simulating Individual Random Fields

In Section 2.3.2, I deduced the approximate expressions for the random fields M(·) and X1(·) when

errors are small, but these results are approximate and say nothing about what happens when errors are

large. In this section, I explain how to derive the random fields M(·) and X1(·) using simulation-based
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methods when the underlying model (defined by the functional parameters, µ(·) and C(·), the scalar

parameter σ, and the way in which measureable solutions to (2.3.16) are chosen) is known.

Since the relationship in (2.3.16), which describes how to transform M(·) into X1(·), does not depend

on x, if we know the latent model, then realizations of M(·) and X1(·) can be deduced by simulating a

realization of logM(·), applying the exponential transform to obtain a realization of M(·), and solving

(2.3.16) to derive X1(·).

Gaussian processes are easy to simulate. Of course, it is not possible to simulate the continuous

trajectory itself, but we can simulate a space-discretized version. In particular, we can simulate Uj(·) by

constructing a grid (x1
j , . . . , x

L
j ) and simulating a single draw from a zero-mean, multivariate Gaussian

distribution of dimension L with a covariance matrix Σj whose kth row and `th column entry equals

Cj(x
k
j , x

`
j).

Remark 2.7. In such a framework of non-linear random fields, it is important to have information about

computation time. It takes approximately 36 seconds to simulate 5000 marginal rates of substitution on

a 100-by-100 grid under Ornstein-Uhlenbeck errors given k1 = 10, k2 = 2, and σ1 = σ2 = 1/2.

2.E The Probability Space and Differentiability

In this appendix, I briefly review the Skorokhod space, a metric that can be introduced in order to make

the Skorokhod space a Polish space, and the probability space in Section 2.3.2. I, then, consider the

aforementioned extensions of standard results.

2.E.1 The Definition of the Skorokhod Space

The Skorokhod space D[0, c)2 contains all deterministic fields on [0, c)2 that are cadlag (right-continuous

with left-limits). Therefore, it contains all continuous fields, some fields with jumps, and the joint

cumulative distribution function of any pair of non-negative random variables. See Figure 2.18.

2.E.2 A Metric

The Skorokhod space D[0, c)2 can be made into a metric space in a number of ways, but some metrics

are not appropriate in practice. Typically, we are interested in approximating a field—for example, when

we discretize its domain for simulations or estimate from random observations. Such approximations

are manageable when the topological space is complete and separable.18 By definition, a Polish space

satisfies these properties. It is, therefore, sufficient to equip D[0, c)2 with a metric that turns it into a

Polish space. While it is tempting to use the supremum norm, this choice would turn D[0, c)2 into a

non-separable Banach space, making it far from practical, motivating the use of a different metric. I use a

18A topological space is complete if every Cauchy sequence converges and separable if it contains a countable dense
subset.
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Figure 2.18. Top-left: cadlag (right-continuous with left-limits) but not caglad (left-continuous with
right-limits). Top-right: caglad but not cadlad. Bottom-left: Not cadlag or caglad. Bottom-right: Plot
of sin

(
1
x

)
—a more interesting example of a function that is caglad but not cadlad.

metric that (i) coincides with the supremum norm on the subspace of continuous functions with compact

support, and (ii) extends this norm in an appropriate way to all of the other elements of D[0, c)2.

This metric is constructed in the following way:

(i) For continuous f, h ∈ D[0, c)2 with compact support K, the standard metric is:

dK(f, h) = ||f − h||K = sup
x∈K
||f(x)− h(x)||, (2.E.1)

where || · || is the standard Euclidean norm.

(ii) This metric can be extended to all continuous f, h ∈ D[0, c)2 by considering a sequence of closed

balls (Bn), centred at 0, with radius n, and their intersection with the positive orthant. For

continuous f, h ∈ D[0, c)2, this procedure yields:

dC(f, h) =

∞∑
n=1

1

2n−1

(
||f − h||Bn

1 + ||f − h||Bn

)
. (2.E.2)

(iii) Extending this metric to all functions in D[0, c)2 requires some additional care. To illustrate,

Skorokhod (1956) provided an extension of the supremum norm to D[0, 1], but an extension to

D[0,∞) was not provided until somewhat recently in Lindvall (1973). Is make use of one of the
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metrics proposed by Straf (1972). For each ε > 0, let Λε denote the set of homeomorphisms

λ = (λ1, λ2) that map from [0, c)2 to [0, c)2 where λ(0) = 0, and for each component i = 1, 2, we

have:

sup
zi 6=z′i

∣∣∣∣log
λi(zi)− λi(z′i)

zi − z′i

∣∣∣∣ < ε. (2.E.3)

In other words, Λε is the set of homeomorphisms, fixed at zero, whose components have a diffeo-

morphism norm that is bounded above by ε. Now, consider:

d(f, h) = inf
{
ε > 0 : there exists

λ ∈ Λε for which sup
z∈[0,c)2

|f(λ(z))− h(z)| < ε
}
.

(2.E.4)

It can be shown that d(·) is, in fact, a metric, and that equipping D[0, c)2 with d(·) turns it into

a Polish space (see Chapter 3 in Billingsley, 1999, for a related discussion of the construction of a

metric for D[0, 1], and Straf, 1972, for its extension to more general spaces including the space of

interest in this paper).

2.E.3 Probability Distributions

The metric defined above is used to construct the measurable space (D[0, c)2,D), in which D denotes the

Borel sets associated with the Skorokhod Polish space D[0, c)2. It is left to check whether it is possible

to define a sufficiently large set of probability distributions on this space. Consider a field X defined on

a discrete space, such as N2. It is well-known that, by Kolmogorov’s Theorem, a probability distribution

can be defined and characterized by the finite-dimensional distributions of X(z1), . . . , X(zn), for each

choice of n and z1, . . . , zn ∈ N2. This result does not hold for fields with continuous indices, such as

those in D[0, c)2. Some regularity conditions on the set of all finite-dimensional distributions, called

tightness conditions, are required to define distributions on spaces of fields with continuous indices (see,

for example, Section 1 titled “Measures on Metric Spaces” in Billingsley, 1999). These conditions are,

in general, rather difficult to check, but it is known that we can define (i) Gaussian fields (with some

conditions on the covariance operators), (ii) diffusion processes (with conditions on the instantaneous

drift and volatility functions), and (iii) continuous (although possibly non-linear) transforms of these

two objects and their distributions.

2.E.4 Convergence

Let us now fix a probability measure P0 on D . By equipping (D[0, c)2,D) with P0, we turn it into a

probability space. We can, therefore, define (i) almost sure convergence, (ii) convergence in probability,

and (iii) weak convergence (i.e. convergence in distribution).19 The following result is sometimes known

19The notions are respectively denoted (i) Xn
a.s.→ X, (ii) Xn

p→ X, and (iii) Xn
d→ X.
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as the Skorokhod Theorem:

Theorem 2.2. Let (Xn) denote a sequence of random fields. If Xn
d→ X, then there exists another

sequence of random fields (Yn) such that (i) the distribution of Yn is equal to the distribution of Xn, for

each n ∈ N, (iii) the distribution of Y is equal to the distribution of X, and (iv) Yn
a.s.→ Y .

The Skorokhod Theorem relates the notions of almost sure convergence and weak convergence. It

is a powerful tool for deriving some non-trivial results. Since every probability measure on the metric

space (D[0, c)2,D) is the distribution of some random field, we know that, if a sequence of probability

measures (Pn) converges to P , then there exists a sequence of random fields (Xn) such that (i) Xn has

distribution Pn, for every n ∈ N, (ii) X has distribution P , and (iii) Xn
d→ X. The Skorokhod Theorem

says that we can construct this sequence (and its limit) on a common probability space and that we can

construct it so that it converges almost surely to its limit.

2.E.5 The Continuous Mapping Theorem

The Continuous Mapping Theorem is a direct extension of the Skorokhod Theorem:20

Theorem 2.3. Consider a continuous (non-linear) transform A(·) from (D[0, c)2,D) to (D[0, c)2,D)

such that Z = A(X). If (Xn) satisfies Xn
d→ X, then Zn = A(Xn)

d→ Z.

If we have a (non-linear) continuous transform A(·) that maps from (D[0, c)2,D) to (D[0, c)2,D),

then every probability measure P0 on D induces a probability measure Q0 on D , defined by Q0(S) =

P0(invA(S)), for every S ∈ D , where invA(S) denotes the (measurable) set of fields s ∈ D[0, c)2 for

which A(s) ∈ S. The Continuous Mapping Theorem says that, if a sequence of probability measures

(Pn) converges to P , then the sequence of probability measures (Qn) induced by the elements of (Pn)

converges to the probability measure Q induced by P . This result is also valid for bi-dimensional fields.

2.E.6 Dual Spaces, Differentiability, and the Delta Method

The aim of this section is to briefly explain how the delta method can be extended to be applied to random

fields. I avoid certain topological details, for exposition. First, I discuss the Riesz-Markov-Kakutani

theorems. Second, I relate measures with cadlag functions. Third, I use the theory of distributions (or

generalized functions) to formalize the notion of a differential for our cadlag functions (see, for instance,

Schwartz, 1966, and Gelfand and Vilenkin, 1964).

Riesz-Markov-Kakutani Theorems

The Riesz-Markov-Kakutani representation theorems consider spaces of continuous functions. Several

spaces have been considered—for example, the space of continuous functions with compact support and

20See page 20 in Billingsley (1999).
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the space of continuous functions that vanish at infinity. Let C denote one of these spaces. These

theorems characterize the continuous linear functional on this space—that is, the elements of the dual

space, say C ∗, of C .

Theorem 2.4. Any continuous linear functional Ψ on C can be written as an integral:

Ψ(f) =

∫
X

f(x)dµ(x) ≡ 〈f, µ〉, (2.E.5)

where µ is a measure. This measure is unique.

The set of measures associated with C ∗ depends on the definition of C . For instance, when C is the

space of continuous functions vanishing at infinity, C ∗ is the space of measures with bounded variation.

This theorem implies that it is equivalent to know the unique measure µ or its impact 〈f, µ〉 on every

element f of the space C .

Measures and Cumulative Functions

We can also analyze the impact of a measure on other functions. For instance, the cumulative function

associated with a measure µ is defined by the following integral:

H(x) =

∫
X

1u1<x1,u2<x2
dµ(u) =

∫ x1

0

∫ x2

0

dµ(u), (2.E.6)

for every x ∈ X. The cumulative function H(·) is cadlag with bounded variation, ensuring that it is

equivalent to know the unique measure µ or the cumulative function H(·). This argument is the basis

for the Riemann-Stieltjes integral, explaining why we often encounter the following notation in practice:

〈f, µ〉 =

∫
X

f(x)dH(x) ≡ 〈f,H〉. (2.E.7)

The trajectories of the random fields in Section 2.3 are cadlag with bounded variation. Therefore,

each trajectory is associated with a unique measure µ. Since these trajectories depend on ω ∈ Ω, each

random field is associated with a stochastic cumulative function, say H(x;ω). This setting induces the

following stochastic integral:

〈f,H(·;ω)〉 =

∫
X

f(x)dH(x;ω), (2.E.8)

with ω varying.

Partial Derivatives

The notation
∫
x
f(x)dH(x) gives the impression that H(·) is differentiable when it is not—of course, it

may not even be continuous. Let us take a moment to understand this notation. First, notice that, if

C0 ⊆ C1, then C ∗0 ⊆ C ∗1 . It is, therefore, natural to begin by considering a subset of C . To this end,
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let CK,1 denote the subspace of continuously-differentiable functions with compact rectangular support

K = [
¯
x1, x̄1] × [

¯
x2, x̄2]. It can be shown that the measure µ—or equivalently, the cumulative function

H(·)—is characterized by its impact 〈f,H〉 on each function f ∈ CK,1. Now, let us consider the linear

functional and integrate by parts with respect to x2. This procedure yields:

〈f,H〉 =

∫ x̄1

¯
x1

∫ x̄2

¯
x2

f(x1, x2)H(dx1, dx2)

=

∫ x̄1

¯
x1

{[
f(x1, x2)H(dx1, x2)

]x̄2

¯
x2

−
∫ x̄2

¯
x2

∂f(x1, x2)

∂x2
H(dx1, x2)dx2

}
= −

∫ x̄1

¯
x1

∫ x̄2

¯
x2

∂f(x1, x2)

∂x2
H(dx1, x2)dx2.

(2.E.9)

The right-hand side of the final equality is a continuous functional of f and can be written as, say

〈f,H1〉, by the representation theorem above, where H1 is defined by:

∫
X

f(x)H2(dx) = −
∫
X

∂f(x1, x2)

∂x2
H(dx1, x2)dx2. (2.E.10)

If we compare this expression with the standard formula for integration by parts, we see that H2 can

be interpreted as the partial derivative of H with respect to x2. We can, similarly, define its partial

derivative with respect to x1:

∫
X

f(x)H1(dx) = −
∫
X

∂f(x1, x2)

∂x1
H(x1, dx2)dx1. (2.E.11)

To summarize, the (partial) derivative of a cadlag function—that is, the derivative of a measure—is itself

a measure. This derivative can be used in the usual way whenever we are concerned with its impact

on continuously-differentiable functions. Moreover, the partial derivatives of H are stochastic whenever

the measure of H is stochastic. We can, therefore, construct partial derivatives of our random fields

whenever we need them to compute stochastic integrals.

2.F Prices and Quantities for Aggregate Goods

If there were only two goods (with precise characteristics and identical quantity units) and if their

markets were competitive, then all consumers would face the same prices at each date t. In such an

environment, we would only observe a small number of distinct prices, making it impossible to non-

parametrically identify preferences. This feature of the identification problem motivates a literature

on the set identification of preferences, starting with Varian (1982), who builds on work by Afriat

(1967). This reasoning also underlies the construction of price indices with values independent of the

individuals, but possibly depending on the province or state—for instance, only 5 distinct prices per year

are available in the application in Dette et al. (2016). However, with scanner data, there often exists
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significant variation in prices and expenditures (see Chernozhukov et al., 2020):

(i) Prices almost always vary across retailers (even for homogeneous goods). This problem is inflated

by sales, discounts, and wholesale pricing. For example, in the empirical application in Section

1.5, a twenty-four pack of Miller Lite ranges from $6.99 to $35.63. This wide range of prices exists,

without even accounting for the fact that packs are, in general, although not always, cheaper per

bottle.

(ii) To obtain a reasonable number of goods, we need to aggregate a large number of different homo-

geneous goods, without artificially forcing prices to be the same across consumers, as in Echenique

et al. (2011), Dette et al. (2016), Kitamura and Stoye (2018), Deb et al. (2018), or Allen and

Rehbeck (2019). This procedure yields even more price variation. For example, in our empirical

application, the price of beer ranges from $0.63 to $21.98 per litre.

(iii) It is also common to observe lot of variation in expenditure. For example, in our empirical appli-

cation, monthly expenditure ranges from $6.23 to $2767.76. It would be inappropriate to restrict

all consumers to have the same expenditure, as in Kitamura and Stoye (2018).

2.F.1 Price and Quantity Indices

Assume that (aggregate) good j is composed of Kj homogeneous goods. In practice, Kj can be very

large. For example, the Nielsen dataset contains information on “three million unique [universal product

codes] for 1073 products in 106 product groups” (see Ng, 2017, Guha and Ng, 2019, and the detailed

description in Section 2.6). In general, for each consumer i and date t, we observe a price pijkt and

quantity xijkt, for every good k = 1, . . . ,Kj and group j = 1, 2. We need to transform our observations

into a common quantity unit, and define aggregate prices (pijt) and quantities (xijt). These amounts

are aggregated over goods, but depend on the consumer, group, and month.

To aggregate goods, it is necessary to define a benchmark—typically, a representative consumer at a

reference date. To this end, let us consider average expenditure in aggregate good j at reference date 0:

Ēj0 =
1

n

n∑
i=1

Kj∑
k=1

pijk0xijk0. (2.F.1)

Equivalently, we can write:

Ēj0 =

Kj∑
k=1


(

1

n

n∑
i=1

pijk0

)(
n∑
i=1

pijk0xijk0

)(
n∑
i=1

pijk0

)−1
 =

Kj∑
k=1

pjk0xjk0, (2.F.2)

where pjk0 denotes the average price of the kth homogeneous good in aggregate group j at reference
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date 0, and xjk0 denotes a weighted sum of quantities xijk0. Precisely:

pjk0 =
1

n

n∑
i=1

pijk0 and xjk0 =

(
n∑
i=1

pijk0xijk0

)(
n∑
i=1

pijk0

)−1

. (2.F.3)

We can average prices because they concern homogeneous groups of goods.

Now, we can construct prices (pijt) and quantities (xijt) for each consumer i, group j, and date

t with the Laspeyres and Paasche indices. To do so, we need to consider the ratio of expenditure

Eijt =
∑Kj
k=1 pijktxijkt and benchmark expenditure Ēj0. This ratio can be written as:

Eijt
Ēj0

=

 Kj∑
k=1

pijktxijkt

 Kj∑
k=1

pjk0xjk0

−1

= LijtPijt, (2.F.4)

where Lijt denotes the Laspeyres price index, defined by:

Lijt =

 Kj∑
k=1

pijktxjk0

 Kj∑
k=1

pjk0xjk0

−1

, (2.F.5)

and Pijt denotes the Paasche quantity index, defined by:

Pijt =

 Kj∑
k=1

pijktxijkt

 Kj∑
k=1

pijktxjk0

−1

. (2.F.6)

Intuitively, Lijt is the (relative) evolution of the aggregate price between (pijkt, xijkt) and the benchmark.

The interpretation is similar for Pijt. We can, as a result, write:

pijt = PjLijt and xijt = XjPijt, (2.F.7)

where Pj and Xj are values to be fixed.

By the coherency of the definition of expenditure in group j, we expect to obtain Ēj0 = PjXj . There

is, however, one remaining degree of freedom—the homogeneous goods in a group are usually measured

in qualitatively dissimilar units (e.g. kilograms, litres, dozens), yielding a need for an Artificial Quantity

Unit (AQU). Without loss of generality, I set an AQU by fixing Xj = 1. Under this restriction:

pijt =

Kj∑
k=1

pijktxjk0 and xijt =

 Kj∑
k=1

pijktxijkt

 Kj∑
k=1

pijktxjk0

−1

, (2.F.8)

for every consumer i, group j, and date t. It is worth mentioning that I have used the Laspeyres-Paasche

decomposition in a non-standard way. Indeed, it is usually applied to measure inflation and aggregated

over both goods and consumers. I only aggregate over goods in order to keep the heterogeneity in prices
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at the consumer level.

2.F.2 Direct Choice of a Common AQU

The standard aggregation method above is simplified if we consider goods at a sufficiently disaggregate

level. In order to illustrate, let us consider two aggregate groups:

Group 1: Beverages with an alcohol percentage between 3% and 8%;

Group 2: Beverages with an alcohol percentage between 9% and 15%.

The first group includes beers and ciders, and the second group includes wines. The separability as-

sumption is almost satisfied between these groups and all other goods, although there can be some

complementarity with food—for instance, the joint consumption of Sauternes and foie gras. In this

example, it is easy to define an AQU—we can simply define the price pijt to be the ratio of expenditure

Eijt and the volume of all beverages, or volume of all alcohol, purchased by consumer i, in group j, at

date t. It should be noted that preferences and aggregate data on groups of goods depend on the AQU.

If there is a lot of variability in the price of a unit within an aggregate group, then there will be a

lot of variability in the price of that group. In general, we will not observe some very small or large

prices, but, as we see in the application in Section 2.6, the observed prices can be well-distributed in a

wide interval. Similar conclusions hold for expenditure. From now on, I assume that prices (pijt) and

quantities (xijt) have been constructed using one of these approaches from the crude observable data.

Remark 2.8. Of course, in some datasets, we do not observe pijkt if the kth good in group j is not

purchased by consumer i at date t. This type of partial observability is problematic if we want to

aggregate using the Laspeyres and Paasche indices, but not if we have a common AQU. See Crawford

and Polisson (2016) and Section 5 in Chernozhukov et al. (2020).

2.G Regularizing the Nadaraya-Watson Estimator

The Nadaraya-Watson estimator is a local estimator, creating difficulty when deriving its asymptotic

distributional properties when it is considered as a process indexed by z. It is possible to partially

solve this difficulty by “projecting” this estimator onto a partition of unity. Projecting onto a partition

of unity turns the local estimator into a global estimator. In this section, I discuss the approach in

Zinde-Walsh (2018).

In Zinde-Walsh (2018), the estimator of interest does not necessarily have a closed-form solution, but

it can be defined by means of integration. Let:

F̂ (x|z) =

∑n
i=1 1{xi ≤ x}K

(
zi−z
h

)
K
(
zi−z
h

) =
1
nh

∑n
i=1 1{xi ≤ x}K

(
zi−z
h

)
f̂(x)

, (2.G.1)
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denote the usual kernel estimator for a conditional cumulative distribution function, obtained by inte-

grating the kernel estimator for the conditional density.21 If ϕ(·) is a continuously-differentiable function

of x with bounded support, then, by integration by parts, we obtain:

∫
ϕ(x)f̂(x|z)dx = −

∫
F̂ (x|z)dϕ(x)

dx
dx. (2.G.2)

Of course, this simple formula fails to hold when ϕ(·) has unbounded support. Therefore, if we are

interested in the expectation of a function of x with unbounded support, as with the conditional mean

for which ϕ(x) = x, then we cannot use this relationship.

Let us now show how we can use a partition of unity. A partition of unity on R+ is a set R of

functions ρ : R+ → [0, 1] that satisfy (i)
∑
ρ∈R ρ(x) = 1, at every x ≥ 0, and (ii) for every x ≥ 0, there

exists a neighbourhood of x on which a finite number of functions in R are non-zero. For example:

ρn(x) =


x− (n− 1), if n− 1 < x < n,

1− (x− n), if n < x < n+ 1,

0, otherwise,

(2.G.3)

for every x ≥ 0 and each n ∈ N, is a partition of unity on R+. Indeed, exactly two functions in this set

are positive at each point in R+ and these two functions sum up to one. I illustrate several elements of

this partition of unity in Figure 2.17(a).

Here, we will require a partition of unity consisting of continuously-differentiable functions with

bounded support. There are many ways to construct a partition with these properties (see Christensen

and Goh, 2017). We can use the partition of unity:

ρn(x|γ) =


1
2

{
1− cos

[
π(γx− n)

]}
, if n

γ < x < n+2
γ ,

0, otherwise,

(2.G.4)

for every x ≥ 0 and each n ∈ N, in which γ > 0 denotes a bandwidth parameter and π denotes the

mathematical constant, rather than the density π(·) in Table 2.1. Once again, exactly two functions in

this set are positive at each point in R+ and these two functions sum up to one. I illustrate several

elements of this partition of unity in Figure 2.17(b).

Under a regularity condition on ϕ(·), we can apply Fubini’s Theorem to construct a “smoothed”

21An extra condition on the support of K(·) needs to be introduced for this estimator to be valid.
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n

1

n− 1 n+ 1
z1

ρn

(a)

1

z1
n− 1 n n+ 1

ρn

(b)

Figure 2.19. On the left, I illustrate ρn−1, ρn, and ρn+1 in (2.G.3). On the right, I illustrate ρn−1, ρn,
and ρn+1 in (2.G.4). Dark lines highlight ρn.

kernel estimator f̃(x|z) for the conditional density f(x|z), defined by its impact on functions:∫
ϕ(x)f̃(x|z)dx ≡

∑
n

∫
ϕ(x)ρn(x)f̃(x|z)dx

= −
∑
n

∫
F̂ (x|z) d

dx
[ϕ(x)ρn(x)] dx,

(2.G.5)

where the first relationship follows from Fubini’s Theorem (see Assumption 4 in Zinde-Walsh, 2018). A

smoothed Nadaraya-Watson estimator can be obtained by inputing ϕ(x) = x. The resulting estimator

has the form:

x̃(z) = −
∑
n

∫
F̂ (x|z) d

dx
[xρn(x)] dx, (2.G.6)

This slight change in the definition yields convergence (at a parametric rate) and lets us apply a functional

version of the Central Limit Theorem.

A similar technique can be used to smooth the Nadaraya-Watson estimator with respect to the

conditioning variable z. For this discussion, let us consider the Nadaraya-Watson estimator x̃(z) defined

in (2.G.6). This estimator is non-negative at each z. We can, thus, define the cumulative function:

G̃(z) =

∫ z

0

x̃(u)du, (2.G.7)

and define a smoothed version
≈
x(z) of the Nadaraya-Watson estimator by means of its impact on functions

of z with bounded support. Again, the purpose of this procedure is to transform the local estimator into

a global estimator. Without a global estimator, we cannot formally discuss notions like inversion. We

could, instead, start with a global estimator, but the Nadaraya-Watson estimator is tractable, and this

regularization will let us apply the theory of generalized functions to test the integrability of expected

demand with a parametric rate (see Section 2.5.4).
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2.H An Algorithm to Invert a Deterministic Field

The Nadaraya-Watson estimator can be used to invert a known deterministic function A(·). Indeed, the

consistency of the Nadaraya-Watson estimator requires the sample distribution of (zj : j = 1, . . . , J) to

converge to a continuous distribution with support Z, and this convergence can be reached with random

zj ’s, as assumed in Assumption 2.5, as well as with a “grid” of values for which the empirical distribution

of the grid converges to a continuous limiting distribution π (see Gasser and Müller, 1984).

We can invert by applying the following steps:

Step 1: Construct a deterministic grid (z1, . . . , zJ) for z.

Step 2: Compute xj = A(zj), for each j.

Step 3: Use the joint observations to compute the Nadaraya-Watson estimator for E[Z|X = x]. This

estimator provides a consistent approximation of invA(x). This approach transforms the “ir-

regular” grid x1, . . . , xJ into a regular grid.
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Chapter 3

Non-Parametric Taste Uncertainty

In Chapter 2, I use random fields to construct a model of consumption for scanner data with infinite-

dimensional heterogeneity, and use this model to identify and estimate demand and preferences. However,

there are many ways to construct an identified model with infinite-dimensional heterogeneity.

In this chapter, I introduce two models of non-parametric random utility for demand systems: the

stochastic absolute risk aversion (SARA) model, and the stochastic safety-first (SSF) model. In each

model, individual-level heterogeneity is characterized by a distribution π ∈ Π of taste parameters, and

heterogeneity across consumers is introduced using a distribution F over the distributions in Π. De-

mand is non-separable and heterogeneity is infinite-dimensional. Both models admit corner solutions. I

consider two frameworks for estimation: a Bayesian framework in which F is known, and a hyperpara-

metric (or empirical Bayesian) framework in which F is a member of a known parametric family. These

methods are illustrated by an application to a large U.S. panel of scanner data on alcohol consumption.

3.1 Introduction

As described in the previous chapter, the recent availability of databases containing all dated purchases

made by a large number of consumers (28,036 in the application) presents a modern challenge for the

econometrics of demand systems, requiring new models and estimation approaches (see, for example,

Burda et al., 2008, 2012, for discrete choice, and Guha and Ng, 2019, Chernozhukov et al., 2020, and

Chapter 2 for the first analyses of such data in the demand literature). This type of data is commonly

called scanner data because its collection involves retailers or households scanning each purchased good

on the date of purchase. This chapter introduces two new models of random utility for scanner data:

the stochastic absolute risk aversion (SARA) model, and the stochastic safety-first (SSF) model. These

models have the following advantages in comparison with the existing literature:

(i) Both models are consistent with consumer theory : Every consumer maximizes a strictly increasing

179
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and strictly quasi-concave utility function. The latter property is not accommodated by existing

approximations of the utility function like the quadratic approximation of the utility function (Theil

and Neudecker, 1958; Barten, 1968), the translog utility model (Johansen, 1969; Christensen et al.,

1975), or the Almost Ideal Demand System (Deaton and Muellbauer, 1980a) and its extensions

(Banks et al., 1997; Moschini, 1998).

(ii) Both models are non-parametric. In each model, the utility function is indexed by a functional

parameter characterizing the individual heterogeneity, allowing for infinite-dimensional hetero-

geneity. In this respect, this chapter differs from the existing literature when finite-dimensional

heterogeneity is considered (see Beckert and Blundell, 2008, Blomquist et al., 2015, Blundell,

Horowitz, and Parey, 2017, and Blundell, Kristensen, and Matzkin, 2017, for some examples of

finite-dimensional restrictions). The non-parametric approach in this chapter is in line with Dette

et al. (2016) who write, “in general the multivariate demand function is a non-monotonic function

of an infinite-dimensional unobservable—the individual’s preference ordering.”

(iii) Both models yield demand functions with non-separable heterogeneity (see the discussions in Brown

and Walker, 1989, Beckert and Blundell, 2008, and Dette et al., 2016). They are also endowed with

precise structural interpretations, as heterogeneity is introduced by means of a distribution π of

taste parameters, so that we can imagine consumers facing taste uncertainty, which they eliminate

using expected utility.

(iv) Both models are identified under weak restrictions. Identification follows from the use of panel

data. Without such data, we lose identification (Hausman and Newey, 2016b). Of course, the

structure of scanner data is extremely important.

Each model is characterized by a basis of functions. This basis is used to generate a family of utility

functions. A distribution is, then, placed over this family. To be precise, I start with a basis of increasing

and concave functions. Let U(x; a) denote an element of this basis, where x is a bundle and a ∈ A

is a finite-dimensional vector of taste parameters. A family of utility functions is generated by taking

the convex hull of the basis. Let U(x;π) = Eπ
[
U(x; a)

]
denote an element of this family, where π ∈ Π

is a distribution on A . This family is indexed by a functional parameter π, which can be structurally

interpreted as taste uncertainty (resolved after the consumer makes her decisions). The heterogeneity

across consumers is introduced using a distribution F on the set Π of probability distributions π on

A . Therefore, each model combines uncertainty and heterogeneity: the uncertainty in taste for a given

consumer is represented by π, and the heterogeneity across consumers is captured by F .

The paper considers a two-good framework with continuous support for x. It is organized as follows:

Section 3.2 introduces the stochastic absolute risk aversion (SARA) model and Section 3.3 introduces

the stochastic safety-first (SSF) model. For each model, I derive conditions on Π under which there

exists a unique demand system, for each π ∈ Π. In Section 3.4, the distribution of heterogeneity F
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is introduced. When F is known, we obtain a Bayesian framework in which the functional parameter

π ∈ Π has to be estimated. When F is a member of a known parametric family, indexed by θ, we obtain

an empirical Bayesian framework with a hyperparameter θ that has to be estimated, and a stochastic

functional parameter π that has to be filtered. In Section 3.5, I consider the identification of the taste

distribution π within each model. Next, I examine if it is possible to distinguish between stochastic

risk aversion and stochastic safety-first. In Section 3.6, I use the Nielsen Homescan Consumer Panel

to illustrate our methodology in an application to the consumption of alcohol. Section 3.7 concludes.

The details of the Dirichlet process are in Appendix 3.A; integrability is discussed in Appendix 3.B;

an optimization procedure for filtering the taste distributions π after estimating F is in Appendix 3.C;

details of the data are placed in Appendix 3.D.

3.2 A Model with Stochastic Risk Aversion

This section introduces the first utility specification that is considered. It first describes the set of

utility functions, then derives conditions under which there exists a unique demand system. The taste

uncertainty is introduced using risk aversion parameters.

3.2.1 The Set of Utility Functions

There are two goods, denoted 1 and 2. Let R̄ = R2
+ denote the non-negative orthant with interior R. A

consumer has preferences over the bundles in R̄. Her preferences are summarized by a utility function

of the form:

U(x;π) = −Eπ
[

exp(−A′x)
]
, (3.2.1)

for every x such that x1, x2 ≥ 0, where A = (A1, A2) is a positive stochastic parameter characterizing the

consumer’s degrees of absolute risk aversion with respect to goods 1 and 2, and π is a joint distribution

for this pair of stochastic taste parameters. Her preferences are, as a result, contained in a broad family

of utility functions, indexed by a functional parameter π. There are two interpretations of specification

(3.2.1): (i) the preferences are summarized by a deterministic utility function in the convex hull gen-

erated by a parametric family, or (ii) the consumer faces “taste uncertainty” and she resolves this

uncertainty by using expected utility. These preferences will be referred to as stochastic absolute risk

aversion (SARA) preferences.1

If π is a point mass at a = (a1, a2) such that a1, a2 > 0, the stochastic parameters are constant, and

1These preferences differ from those used to describe consumer behaviour when facing ambiguity or uncertainty, as in,
say, Halevy and Feltkamp (2005).
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U(x;π) reduces to U(x; a) = − exp(−a′x). This function is strictly increasing because we have:2

∂U(x; a)

∂x
=

 a1 exp(−a′x)

a2 exp(−a′x)

 > 0, (3.2.2)

at each x such that x1, x2 > 0, and concave (although not necessarily strictly concave) because the

Hessian associated with the utility function:

∂2U(x; a)

∂x∂x′
= − exp(−a′x)

 a2
1 a1a2

a1a2 a2
2

 , (3.2.3)

is negative semi-definite, at each x such that x1, x2 > 0. This matrix is related to a bivariate measure

of absolute risk aversion3 (Richard, 1975; Karni, 1979, 1983; Grant, 1995). These properties translate

into properties of the more general utility function: U(x;π).

Proposition 3.1. If preferences are SARA and the consumer’s taste distribution π is not the mixture

of point masses at a, a′ ∈ R where a is proportional to a′, then the utility function U(x;π) is strictly

increasing with a negative definite Hessian everywhere on R.

Proof. The utility function U(x;π) is strictly increasing on R because:

∂

∂x
Eπ [U(x;A)] = Eπ

[
∂U(x;A)

∂x

]
> 0, (3.2.4)

at every x such that x1, x2 > 0. Its Hessian is negative definite on R because the sum of two 2-by-2

matrices of rank 1, whose columns are not proportional, has full rank.

Proposition 3.1 implies that we have effectively constructed a family of well-behaved utility functions

{U(x;π) : π ∈ Π} indexed by a functional parameter π, describing the taste uncertainty, instead of the

standard finite-dimensional parameter that is usually considered in the literature.

Let gπ(·) denote the function defined by the implicit equation:

U(x1, gπ(x1, u);π) = u, (3.2.5)

for every x1 ≥ 0, and each (attainable) level of utility u < 0. This implicit equation has a unique solution

because U(x;π) is strictly increasing on R̄. The function gπ(·, u) is the indifference curve associated

with the functional parameter π and a utility level of u—gπ(·, u) maps every value of x1 to a value of x2

2Here, > 0 means each component is strictly larger than 0.
3Such a measure can be defined as:

−
(

diag
∂U(x;π)

∂x

)−1/2 ∂2U(x; a)

∂x∂x′

(
diag

∂U(x;π)

∂x

)−1/2

,

where diag
∂U(x;π)
∂x

is the diagonal matrix whose diagonal elements are the first derivatives of U(x;π).
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for which (x1, x2) attains a utility level of u given π. The implicit function theorem implies that gπ(·) is

twice-continuously-differentiable with respect to x1 and:

∂gπ(x1, v)

∂x1
= −MRS(x1, gπ(x1, v);π), (3.2.6)

on R where MRS(x;π) ≡ ∂U(x;π)/∂x1

∂U(x;π)/∂x2
denotes the marginal rate of substitution at x—the rate at which

the consumer is willing to exchange good 1 for good 2 given x and π. The indifference curve gπ(·, v) is

strictly convex such that:
∂2gπ(x1, v)

∂x2
1

> 0, (3.2.7)

at every x1 > 0, since the Hessian of U(x;π) is negative definite everywhere on R (see Lemma 1 in

Chapter 2). This property is stronger than the standard assumption of strict quasi-concavity, which

allows this derivative to be zero on a nowhere dense set (Katzner, 1968). This distinction is important

for what follows.

Note that, after integrating out the taste uncertainty, the absolute risk aversions will depend on the

consumption level. For instance, when A1 and A2 are independent with distributions π1 and π2, the risk

aversion for good 1 becomes:

A1(x1) = −d
2U1(x1;π1)/dx2

1

dU1(x1;π1)/dx1
=

Eπ1 [A2
1 exp(−A1x1)]

Eπ1
[A1 exp(−A1x1)]

, (3.2.8)

where U1(x1;π1) denotes Eπ1
[exp(−A1x1)], the portion of the utility function U(x;π) corresponding to

good 1. Clearly, A1(x1) depends on x1, as it is the average of A1 given the following modified density:

A1 exp(−A1x1)

Eπ1
[A1 exp(−A1x1)]

, (3.2.9)

with respect to π1.

3.2.2 The Demand Function

Let z ∈ R denote a pair z = (y, p) in which y denotes expenditure and p denotes the price of good 1,

both normalized by the price of good 2. The consumer can purchase a bundle x ∈ R̄ if, and only if,

px1 + x2 ≤ y. She chooses a bundle x ∈ R̄ that solves:

max
x∈R̄

U(x;π) subject to px1 + x2 ≤ y. (3.2.10)

Let X∗(z;π) denote the solution to:

max
x∈R2

−Eπ
[

exp(−A′x)
]

subject to px1 + x2 ≤ y. (3.2.11)
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While (3.2.10) is restricted to bundles in the non-negative orthant, (3.2.11) allows for negative values.

The solution to (3.2.11) is characterized by the following system of first-order conditions:

MRS(x;π) ≡
Eπ
[
A1 exp(−A′x)

]
Eπ
[
A2 exp(−A′x)

] = p and px1 + x2 − y = 0. (3.2.12)

The first equality says that the marginal rate of substitution equals the relative price p. The second

equality implies that the budget constraint holds with equality. Equivalently, we can solve the equality:

Eπ
[
(A1 − pA2) exp(−(A1 − pA2)x1) exp(−A2y)

]
= 0, (3.2.13)

for the first component X∗1 (z;π), and then use the budget constraint in (3.2.12) to solve for X∗2 (z;π).

As long as A1 − pA2 is not almost surely equal to zero, the first-order partial derivative of the left side

of this equality with respect to x1 is strictly negative:

− Eπ
[
(A1 − pA2)2 exp(−(A1 − pA2)x1) exp(−A2y)

]
< 0. (3.2.14)

The function on the left side of (3.2.13) is, therefore, strictly decreasing in x1, implying that there exists

a unique solution X∗1 (z;π) to (3.2.13), and a unique solution X∗(z;π) to (3.2.11). If X∗(z;π) is in R̄,

then X∗(z;π) coincides with the solution to (3.2.10). Else, the solution to (3.2.10) is on the boundary of

R̄. Let X(z;π) denote the solution to (3.2.10) given both z and π. There are three regimes of demand

in the design space:

X(z;π) =


(0, y)′, if X∗1 (z;π) ≤ 0,

X∗(z;π), if 0 ≤ X∗1 (z;π) ≤ y/p,

(y/p, 0)′, if y/p ≤ X∗1 (z;π).

(3.2.15)

Because the utility function U(x;π) has strictly convex indifference curves everywhere on R, the demand

function X(z;π) is invertible in the second regime (see Proposition 2 in Chapter 2).

Proposition 3.2. If preferences are SARA and the consumer’s taste distribution π is not the mixture

of point masses at a, a′ ∈ R where a is proportional to a′, then there exists a unique solution X(z;π) to

the maximization problem in (3.2.10) given z and π, for every z ∈ R, almost surely, for every π. There

are three regimes of demand defined by (3.2.15). The resulting demand function X(z;π) is invertible in

the second regime.

To make a final remark, let us consider a risk-neutral consumer. In particular, let us assume that A1

and A2 tend stochastically to zero, with means that they tend to zero so that Eπ[A1]/Eπ[A2] converges

to a non-degenerate a0. By considering the Taylor expansion of utility, it can be shown that these

preferences are represented by:

x1 +
x2

a0
. (3.2.16)
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This representation is unique up to an increasing transformation. For this risk-neutral consumer, goods

are considered to be perfect substitutes. It is known that such a consumer will consume only good 1

whenever p < a0, and only good 2 whenever p > a0.

3.2.3 Gamma Taste Uncertainty

As an illustration, let us assume that A1 and A2 are independent and that Aj has a Gamma distribution

γ(νj , αj) with degree of freedom νj > 0 and scale factor αj > 0, for j = 1, 2. Under this specification,

π = γ(ν1, α1)⊗γ(ν2, α2), where ⊗ denotes the tensor product of distributions. By the Laplace transform

of the Gamma distribution:

U(x;π) = −
(

α1

α1 + x1

)ν1 ( α2

α2 + x2

)ν2
. (3.2.17)

Under this specification, the absolute risk aversion for good 1 in (3.2.8) becomes:

A1(x1) =
1 + ν1

α1 + x1
, (3.2.18)

which is hyperbolic in x1. The indifference curve gπ(·) associated with utility level v is:

x2 = gπ(x1, v) ≡ α2

{[
−1

v

(
α1

α1 + x1

)ν1] 1
ν2

− 1

}
, (3.2.19)

for every x1 ≥ 0 and v ∈ (−1, 0) such that:

x1 < α1

[(
−1

v

) 1
ν1

− 1

]
. (3.2.20)

It is easily shown that the second derivative of the indifference curve gπ(·, v) equals:

d2gπ(x1, v)

dx2
1

= c

(
α1

α1 + x1

) ν1
ν2

+2

> 0, (3.2.21)

for some c > 0. This inequality confirms that the indifference curve gπ(·, v) is strictly convex. Further-

more, the MRS is equal to:

MRS(x;π) =
ν1

ν2

α2 + x2

α1 + x1
. (3.2.22)

The unconstrained solution X∗1 (z;π) to the first-order condition in (3.2.12) is equal to:

X∗1 (z;π) =
ν1

ν1 + ν2
· y
p

+
ν1α2

ν1 + ν2
· 1

p
− ν2α1

ν1 + ν2
. (3.2.23)
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ν1α2
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ν2α1
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y

Figure 3.1. Regimes for Gamma Taste Uncertainty. The red region contains all designs z for
which X1(z;π) > 0 and X2(z;π) = 0; the blue region contains all designs z for which X1(z;π) = 0 and
X2(z;π) > 0; the green region contains all designs z for which X1(z;π) > 0 and X2(z;π) > 0.

The second component X∗2 (z;π) is deduced from the budget constraint in (3.2.12). By equation (3.2.15),

the demand function X(z;π) coincides with X∗(z;π) over the set Z of pairs z such that:

min
{
ν1y − pν2α1 + ν1α2, ν2y + pν2α1 − ν1α2

}
> 0. (3.2.24)

The three regimes of demand are illustrated in Figure 3.1 in the design space. The strict convexity of

the indifference curve gπ(·, v) on Z implies that the demand function X(·;π) associated with this utility

function is invertible on Z.

3.3 A Model with Stochastic Safety-First

We now consider a model with taste parameters that have a safety-first interpretation.

3.3.1 The Set of Utility Functions

In Section 3.2, I constructed a family of well-behaved utility functions by taking the convex hull generated

by a particular basis. In this section, I consider a second basis, consisting of functions with the form:

U(x; a) = (x1 + a1x2)− (x1 + a1x2 − a2)+ = min
{
x1 + a1x2, a2

}
, (3.3.1)

for every x1, x2 ≥ 0, where x+ = max{0, x} and a1, a2 > 0. This function corresponds to the “safety-

first” criterion, introduced into the literature on portfolio management by Roy (1952). In order to

illustrate, let us consider the consumption of alcohol, as in Chapter 2. Suppose that there are two

groups of goods: group 1 consisting of drinks with low alcohol by volume such as beers and ciders, and

group 2 consisting of drinks with high alcohol by volume such as wines and liquors. Assume that the

quantities are measured in identical units such as volume of alcohol—that is, the total volume of the
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drink in litres multiplied by the alcohol by volume of the drink.4 We can, then, add these volumes

to aggregate two drinks with different sizes and/or percentages of alcohol. Here, a1 is the consumer’s

relative preference between the two groups of drinks, and a2 is a “control” parameter, specifying her

attempt to limit her intake of alcohol.

Now, let us introduce a distribution π such that Eπ[Aj ] <∞, j = 1, 2, and define:

U(x;π) = Eπ
[
(x1 +A1x2)− (x1 +A1x2 −A2)+

]
. (3.3.2)

By the law of iterated expectations, we obtain:

U(x;π) = x1 + Eπ
[
A1

]
x2 − EπEπ

[
(x1 +A1x2 −A2)+

∣∣A1

]
. (3.3.3)

These preferences are referred to as stochastic safety-first (SSF) preferences.

Under mild regularity conditions:

∂U(x;π)

∂x1
= 1− EπEπ

[
1{x1 +A1x2 −A2 > 0}

∣∣A1

]
, (3.3.4)

= Eπ
[
1{x1 +A1x2 −A2 < 0}

]
, (3.3.5)

∂U(x;π)

∂x2
= Eπ

[
A1

]
− Eπ

[
A1Eπ

[
1{x1 +A1x2 −A2 > 0}

∣∣A1

]]
, (3.3.6)

= Eπ
[
A11{x1 +A1x2 −A2 < 0}

]
, (3.3.7)

for every x such that x1, x2 > 0. These partial derivatives are strictly positive when π has full support:

π(a1, a2) > 0, for a1, a2 > 0. By taking the second-order derivatives:

∂2U(x;π)

∂x∂x′
= −

 Eπ[π0] Eπ[A1π0]

Eπ[A1π0] Eπ[A2
1π0]

 , (3.3.8)

for every x such that x1, x2 > 0, where π0 ≡ π(x1 + A1x2|A1) in which π(·|A1) denotes the conditional

density of A2 given A1, assuming that such a density exists. This matrix is both symmetric and negative

definite when π(·|A1) is continuous and A1 is not constant. This result follows from the positivity of

Eπ[π0] and the following equality:

det
∂2U(x;π)

∂x∂x′
= Eπ[π0]Vπ̃(A1) > 0, (3.3.9)

which holds for every x such that x1, x2 > 0, in which π̃ denotes the modified density:

π̃(a) =
π(x1 + a2x2|a1)π(a)

Eπ[π0]
. (3.3.10)

4Quantities could be, alternatively, measured in calories.
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Proposition 3.3. If preferences are SSF and the consumer’s taste distribution π is continuous with full

support given A1, then the utility function U(x;π) is strictly increasing with a negative definite Hessian

everywhere on R.

Consequently, we have constructed another family of well-behaved utility functions {U(x;π) : π ∈ Π}

indexed by a functional parameter π, describing taste uncertainty.

3.3.2 The Demand Function

Let us revisit the utility maximization problem in (3.2.10). Under the safety-first specification, the

analogue of the unconstrained first-order condition in (3.2.13) is given by:

Eπ[(1− pA1)1{x1(1− pA1) +A1y −A2 < 0}] = 0. (3.3.11)

I obtain this equality by equating the marginal rate of substitution with the relative price p, and then

using the budget constraint to replace x2 with y− px1. Under the regularity conditions from above, the

left-hand side is strictly monotone in x1 given π, so that there exists a unique solution to the first-order

condition. As in Section 3.2, I let X∗1 (z;π) denote this solution, and let X∗2 (z;π) denote the quantity

y − pX∗1 (z;π).

Proposition 3.4. If preferences are SSF and the consumer’s taste distribution π is continuous with full

support given A1, then there exists a unique solution X(z;π) to the maximization problem in (3.2.10)

given z and π, for every z ∈ R, almost surely, for every π. There are three regimes of demand defined

by (3.2.15). The resulting demand function X(z;π) is invertible in the second regime.

When the consumer’s preferences are SSF, the MRS has the form:

MRS(x;π) ≡ Eπ[1{x1 +A1x2 −A2 < 0}]
Eπ[A11{x1 +A1x2 −A2 < 0}]

=
1

Eπ[A1|x1 +A1x2 −A2 < 0]
. (3.3.12)

Thus, the rate at which the consumer is willing to exchange good 1 for good 2 given x and π is equal to

the inverse of the expectation of her relative preference between goods A1, conditional on not surpassing

her control parameter A2.

Some functionals of distribution π can be especially interesting. For instance, in an application to

the consumption of alcohol, we might expect the conditional distribution of A2 given A1 = a1 to be

concentrated around a single mode, characterizing an implicit alcohol limit for this consumer. Then, we

can ask the following questions:

(i) Is this limit positively correlated with A1? In other words, is there a positive relationship between

this limit and a preference for strong alcoholic beverages?

(ii) Does a change in the maximum blood alcohol level for driving affect this limit?
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These are questions that cannot be answered using classical demand systems like the Almost Ideal

Demand System (Deaton and Muellbauer, 1980a). In fact, tests based on the Almost Ideal Demand

System have rejected rationality in applications to alcohol consumption (Alley et al., 1992). Clearly, it

is possible that the Almost Ideal Demand System is misspecified.

3.3.3 Exponential Threshold Taste Uncertainty

In general, the first-order condition in (3.3.11) has no closed-form solution. However, its expression can

be simplified for some taste distributions π. As an illustration, let us assume that:

(i) A1 and A2 are independent.

(ii) A2 has an exponential distribution γ(1, λ) with survival function:

P (A2 > a2) = exp(−λa2). (3.3.13)

(iii) A1 has a distribution with all of its moments and Laplace transform: Ψ(v) = E[exp(−vA1)], v ≥ 0.

Under this specification, we can first integrate with respect to A2 within the expectation in (3.3.11) in

order to obtain the following condition:

Eπ
[
(1− pA1) exp{−λ(x1 + (y − x1p)A1}

]
= 0. (3.3.14)

Equivalently, we obtain:

Eπ
[

exp{−λ(y − x1p)A1}
]
− pEπ

[
A1 exp{−λ(y − x1p)A1}

]
= 0. (3.3.15)

This equation can be written in terms of the Laplace transform Ψ for A1. This yields:

Ψ
[
λ(y − x1p)

]
+ p

dΨ

dv

[
λ(y − x1p)

]
= 0, (3.3.16)

which can also be written as:
d log Ψ

dv

[
λ(y − x1p)

]
= −1

p
. (3.3.17)

Finally, by inverting this expression and rearranging the terms, we get:

X∗1 (z;π) =
1

p

[
y − 1

λ

(
d log Ψ

dv

)−1(
−1

p

)]
, (3.3.18)

The second component X∗2 (z;π) of the unconstrained solution in (3.3.11) is deduced from the budget

constraint. It follows from equation (3.2.15) that the demand function X(z;π) coincides with X∗(z;π)
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if, and only if:

0 ≤ 1

λ

(
d log Ψ

dv

)−1(
−1

p

)
≤ y. (3.3.19)

For instance, if A1 follows a gamma distribution γ(ν, α), then log Ψ(v) = −ν log(1+v/α), and we obtain:

d log Ψ(v)

dv
= − ν

α+ v
, (3.3.20)

for v ≥ 0. Moreover, by inverting this function, we get:

(
d log Ψ

dv

)−1

(ξ) = −
(
ν

ξ
+ α

)
. (3.3.21)

Therefore, the solution X∗1 (z;π) has the form:

X∗1 (z;π) =
1

p

[
y +

1

λ
(α− νp)

]
, (3.3.22)

and demand X(z;π) coincides with X∗(z;π) if, and only if:

0 ≤ νp− α
λ

≤ y. (3.3.23)

The regimes of demand are illustrated in Figure 3.2 in the design space. We can also verify that the

Slutsky coefficient is strictly negative5 such that:

∆x(z) ≡ ∂X1(z;π)

∂p
+X1(z;π)

∂X1(z;π)

∂y
= − ν

λp
< 0, (3.3.24)

ensuring that the demand function X(·;π) is invertible over the set Z of pairs z on which demand is

strictly positive (see Section 2.3 in Chapter 2).

3.4 Individual Heterogeneity

Sections 3.2 and 3.3 introduced two utility specifications, both indexed by the functional parameter π.

Of course, different consumers can have different functional parameters. This individual heterogeneity is

introduced in a second layer, by specifying a distribution F over the set Π of distributions on R, such as

the Dirichlet process (see, for example, Navarro et al., 2006, for an application of the Dirichlet process

in modelling individual differences). More precisely, I make the following assumption:

Assumption 3.1 (Latent Stochastic Model).

(i) There are n ≥ 1 consumers.

5This property holds for any Laplace transform Ψ of A1 (see Appendix 3.B).
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α
ν

νp−α
λ

p

y

Figure 3.2. Regimes for Exponential Threshold Taste Uncertainty. The red region contains all
designs z for which X1(z;π) > 0 and X2(z;π) = 0; the blue region contains all designs z for which
X1(z;π) = 0 and X2(z;π) > 0; the green region contains all designs z for which X1(z;π) > 0 and
X2(z;π) > 0.

(ii) Consumers are segmented into M homogeneous groups.

(iii) Consumers in group m have the utility function U(x;πm), for all m = 1, . . . ,M .

(iv) The taste parameters (πm) are independently drawn from a Dirichlet process F .

Assumption 3.1 introduces a distribution F over the functional taste parameter π. This distribution

F characterizes the heterogeneity across homogeneous groups. It can encompass, for example, regional or

demographic differences in preferences. This infinite-dimensional heterogeneity is non-separable in the

stochastic demand equation.

The Dirichlet process can be constructed in three steps:

Step 1: Consider the set of (Bernoulli) distributions on {0, 1}. This set is characterized by q ∈ R̄ such

that q1 + q2 = 1. A distribution defined on this set of distributions is a distribution defined

on this parameter set. We can, for instance, introduce a beta distribution, denoted B(α1, α2).

The distribution B(α1, α2) has a continuous density:

f(q) =
Γ(α1 + α2)qα1

1 qα2
2

Γ(α1)Γ(α2)
, (3.4.1)

with respect to the Lebesgue measure over the simplex {(q1, q2) ≥ 0 : q1 + q2 = 1}, where Γ

denotes the gamma function,6 and α1, α2 > 0 are positive scalar parameters.

Step 2: The beta distribution can be extended to define a distribution on the set of discrete distributions

with weights qj ≥ 0, j = 1, . . . , J , such that
∑J
j=1 qj = 1. This procedure leads to the Dirichlet

6The gamma function Γ is defined by Γ(α) =
∫∞
0 exp(−x)xα−1dx, for each α > 0.
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distribution, denoted D(α). The resulting distribution D(α) has continuous density:

f(q) =
Γ
(∑J

j=1 αj
)∏J

j=1 q
αj
j∏J

j=1 Γ(αj)
, (3.4.2)

with respect to the Lebesgue measure over the simplex:q ∈ RJ+ :

J∑
j=1

qj = 1 and qj ≥ 0, ∀j

 , (3.4.3)

(see, for example, Kotz et al., 2000, page 485, and Lin, 2016, for details).

Step 3: Then, the Dirichlet distribution can be extended to define a distribution on a large set of

distributions7 defined on R̄ (see Appendix 3.A). This procedure leads to the Dirichlet process.

The Dirichlet process is characterized by a distribution µ on R̄ and a scaling parameter c > 0.

The distribution µ can be thought of as the mean of the Dirichlet process, while the parameter

c manages its degree of discretization (see Appendix 3.A). This extension of the Dirichlet

distribution is much more complicated than the Dirichlet distribution, especially because the

notion of the Lebesgue measure on the set of distributions, and the notion of a density, no

longer exist (see Ferguson, 1974, Rolin, 1992, and Sethuraman, 1994).

Now, consider the implications of Assumption 3.1: If the functional and scaling parameters of the

Dirichlet process are known, then we are in a Bayesian framework (see, for example, Geweke, 2012, for a

Bayesian analysis of revealed preference) in which the mean of the posterior distribution of π ∈ Π has to

be estimated. Otherwise, we can assume that the mean µ of our process F is characterized by a finite-

dimensional hyperparameter θ. Naturally, the hyperparametric model has two types of parameters: the

hyperparameter θ to be estimated, and the functional parameters (πm) to be filtered.

3.5 Non-Parametric Identification

In this section, I consider the identification of the functional parameter π within each model from the

observation of a demand function, then whether we can distinguish between the SARA and SSF models.

Intuitively, a consumer’s demand function is identified if we observe her making a lot of consumption

decisions at a variety of designs z. Clearly, we can identify her demand function if (i) her preferences

are constant over time and we observe a large panel or experiment,8 or (ii) she belongs to a large

homogeneous segment of consumers with identical preferences. This explains the form of Assumption

7The realizations of a Dirichlet process are, almost surely, discrete distributions. Although I assumed continuity to prove
the existence of a unique demand system in Section 3.3, these realizations can approximate any continuous distribution.
This discrepancy has no practical implications.

8In this case, when the number of dates T is large, we can have a segment m for each consumer i.
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y
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y
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Figure 3.3. Monotonicity in Heterogeneity. Each figure displays the Engel curves for three con-
sumers at a fixed price. Monotonicity is satisfied on the left. Monotonicity is violated on the right
because the curves cross.

3.1 (as it allows for either interpretation). Later, we apply the segmented approach to scanner data in

the application to the consumption of alcohol in Section 3.6.

With panel data, one no longer requires the assumption that demand is monotonic with respect to

unobserved heterogeneity in order to achieve identification (see Figure 3.3, and the role of this assumption

in Brown and Matzkin, 1995, Matzkin, 2003, and Hausman and Newey, 2016b).

3.5.1 Within Model Identification

In the models introduced in Sections 3.2 and 3.3, and for any π such that demand is invertible, we can

derive the inverse demand function, whose second component coincides with the MRS which can be

integrated to obtain a unique preference ordering. Indeed, by construction, the integrability conditions

(needed to recover a unique well-behaved preference ordering) are satisfied, implying that preferences are

recoverable (see Samuelson, 1948, for a seminal discussion of integrability in the case of two goods, and

Samuelson, 1950, Hurwicz and Uzawa, 1971, and Hosoya, 2016, for general approaches). However, the

possibility to recover preferences from a consumer’s demand function does not imply that the distribution

of taste uncertainty π is identified: Two distinct taste distributions could produce the same MRS.

For identification, I only consider the information contained in the demand function X(·;π) on the

set Z of designs z for which the components of the demand function are strictly positive. This restriction

disregards some information that may be available in the first or third regimes of (3.2.15). In most data-

sets, when a component of the demand function equals zero, the price p is not observed.

Stochastic Absolute Risk Aversion

In the SARA model, the identification condition is:

{
Eπ[A1 exp(−A′x)]

Eπ[A2 exp(−A′x)]
=

Eπ′ [A1 exp(−A′x)]

Eπ′ [A2 exp(−A′x)]
, ∀x ∈ R

}
⇒ π = π′. (3.5.1)
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In the degenerate case in which A is deterministic and equal to (a1, a2), the MRS reduces to a1/a2. Thus,

in this special case, the two-dimensional parameter a = (a1, a2) is identified up to a positive factor. This

reasoning leads us to a question: Does this lack of identification also exist in an extended setting?

First, notice that, the utility function U(x;π) is equal to the moment generating function for π with

a negative sign: Φ(x;π) = −U(x;π). Because this moment generating function characterizes π when

the stochastic parameter A is non-negative (see Theorem 1a in Chapter 13 on Tauberian Theorems in

Feller, 1968), it is equivalent to consider the identification of either π, or Φ(x;π).9 As mentioned, we can

always integrate the MRS to recover a unique preference ordering. That is, we can recover U(x;π) up

to a monotonic transformation. We still need to discern the conditions on π under which we can recover

Φ(x;π). Indeed, moment generating functions have properties that are not necessarily preserved under

monotonic transformations.

We obtain the following result:

Proposition 3.5. If preferences are SARA, then Φ(x;π) and Φ(x;π)ν lead to the same preference

ordering, for all positive scalars ν > 0.

Proof. Let U(x;π) = −Φ(x;π) and Ũ(x;π) = −Φ(x;π)ν denote the utility functions associated with

Φ(x;π) and Φ(x;π)ν , respectively. Then, by definition, we must have:

Ũ(x;π) = −Φ(x;π)ν = −(−U(x;π))ν = φν(U(x;π)), (3.5.2)

where φν(u) = −(−u)ν is strictly increasing for u < 0. Since Ũ(x;π) is a monotonic transformation of

U(x;π), these utility functions yield the same preference ordering.

This means that we can, at most, identify the class of moment generating functions C (Φ) = {Φν :

ν > 0}. Note that, for any moment generating function Φ, the transformed function Φν is also a moment

generating function.

Let us now consider identification when A1 and A2 are independent:

Proposition 3.6. Let Φj denote the marginal moment generating function for Aj , for j = 1, 2. If

preferences are SARA, and A1 and A2 are independent, then (Φ1,Φ2) and (Φ∗1,Φ
∗
2) lead to the same

preference ordering if, and only if, for some ν > 0, we have:

Φ∗1 = Φν1 and Φ∗2 = Φν2 .

Proof. The identification criterion becomes:

(
∂Φ1(x1)

∂x1
Φ2(x2)

)(
Φ1(x1)

∂Φ2(x2)

∂x2

)−1

=

(
∂Φ∗1(x1)

∂x1
Φ∗2(x2)

)(
Φ∗1(x1)

∂Φ∗2(x2)

∂x2

)−1

,

9The existence of the moment generating function does not imply the existence of all power moments and, even if all
power moments exist, they do not necessarily characterize the distribution. A known example is the log-normal distribution
used in the application (Heyde, 1963).
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for all x ∈ R. This criterion can, then, be written as:

∂ log Φ1(x1)

∂x1

(
∂ log Φ∗1(x1)

∂x1

)−1

=
∂ log Φ2(x2)

∂x2

(
∂ log Φ∗2(x2)

∂x2

)−1

,

for all x ∈ R. Thus, we deduce that, if these distributions yield the same MRS, then:

∂ log Φ∗j (xj)

∂xj
= ν

∂ log Φj(xj)

∂xj
,

for some ν > 0, at every xj ≥ 0, for both j = 1, 2. Because the log-transform of the moment generating

function at zero equals zero, by integrating this equation, we get:

log Φ∗j (xj) = ν log Φj(xj), (3.5.3)

at every xj ≥ 0, for both j = 1, 2. Equivalently, Φ∗1 = Φν1 and Φ∗2 = Φν2 .

Proposition 3.6 implies that C (Φ) is identified under the independence of A1 and A2. Indeed, we can

recover the consumer’s preference ordering using traditional methods, and use the fact that all admissible

preference orderings map to a unique class C (Φ).

Of course, independence is a strong restriction. In the SARA model, it is equivalent to the additive

separability of the utility function.10 To see this result, notice that, under independence, we must have:

U(x;π) = −Eπ
[

exp(−A1x1)] · Eπ
[

exp(−A2x2)]. (3.5.4)

Since utility functions are unique up to strictly increasing transformations, this utility function is equiv-

alent to:

Ũ(x;π) ≡ − log(−U(x;π)) = − logEπ
[

exp(−A1x1)]− logEπ
[

exp(−A2x2)], (3.5.5)

which is an additively separable utility function. In Appendix 3.E, I prove a generalization of Proposition

3.6, where stochastic taste parameters have a common component.

Stochastic Safety-First

In the SSF model, the identification condition is:

{
Eπ
[
A1

∣∣x1 +A1x2 −A2 < 0
]

Eπ′
[
A1

∣∣x1 +A1x2 −A2 < 0
] = 1, ∀x ∈ R

}
⇒ π = π′. (3.5.6)

Let us now consider the validity of this condition under an independence assumption. Note, in the SSF

model, independence is no longer equivalent to additive separability.

10In the case of two goods, additive separability is stronger than separability.
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Proposition 3.7. If preferences are SSF, A1 and A2 are independent, and the marginal distribution of

A2 is continuous, then E[A1] is identified, and the marginal distribution of A2 is identified up to some

positive power transformation of its survival function.

Proof. In the SSF model, the MRS is identified, and it satisfies:

Eπ[A1S(x1 +A1x2)] = MRS(x;π)Eπ[S(x1 +A1x2)], (3.5.7)

where S(·) denotes the survival function of A2.

(i) The expectation Eπ[A1] is identified because MRS(x1, 0;π) = Eπ[A1].

(ii) By differentiating (3.5.7) with respect to x2, we get:

Eπ[A2
1S
′(x1 +A1x2)] = MRS(x;π)Eπ[A1S

′(x1 +A1x2)]

+
∂MRS

∂x2
(x;π)Eπ[S(x1 +A1x2)].

When x2 = 0, this equation becomes:

S′(x1)Eπ[A2
1] = MRS(x1, 0;π)S′(x1)Eπ[A1] +

∂MRS

∂x2
(x1, 0;π)S(x1).

By rearranging, we get:

∂MRS

∂x2
(x1, 0;π) =

S′(x1)

S(x1)

(
Eπ[A2

1]−MRS(x1, 0;π)Eπ[A1]
)

=
S′(x1)

S(x1)
V (A1).

Because the partial derivative of the MRS with respect to x2 is identified, the hazard function

λ(x1) = −S′(x1)/S(x1) of the distribution of A2 is identified up to a positive factor. Since S(x1) =

exp{−Λ(x1)}, where Λ(x1) =
∫ x1

0
λ(t)dt is the cumulative hazard function of the distribution of

A2, we can identify S(·) up to a positive power transformation.

Proposition 3.7 provides no information on the identifiability of the distribution of A1 beyond its first

moment. It seems difficult to obtain a general identification result, but insights into the identification

problem can be obtained by considering the two primary families of distributions that are invariant to

positive power transformations, that are, the exponential family and the Pareto family, respectively.

(i) Exponential family: Suppose that the marginal distribution of A2 belongs to the exponential

family, and that we have identified its survival function up to a positive power transformation such

that S(x) = exp{−cx}, for some unknown c > 0. The MRS in (3.5.7) becomes:

MRS(x;π) =
Eπ[A1 exp{−cx2A1}]
Eπ[exp{−cx2A1}]

≡ G0(x2). (3.5.8)
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This expression does not depend on x1. Now, let Ψ(u) = Eπ[exp{−uA1}] denote the Laplace

transform of A1. Under this notation, the equality in (3.5.8) implies:

G0(x2) =
d log Ψ

du
(cx2).

Or, equivalently, G0(u/c) = d log Ψ(u)/du. By integrating, we obtain:

log Ψ(u) = c
[
H(u/c)−H(0)

]
,

where H(·) is a primitive of the MRS. Therefore:

Corollary 3.1. Under the conditions of Proposition 3.7, if the marginal distribution of A2 belongs

to the exponential family, the following results hold:

(a) The power transform c is not identified.

(b) The distribution of A1 is identified under an identification restriction on c.

It is concluded that, under the conditions of Corollary 3.1, the distributions of A1 and A2 are

non-parametrically identified up to a single scalar parameter c > 0.

(ii) Pareto family: Let us now examine whether a similar result can be obtained for the Pareto

family, in which S(x) = x−α, for some α > 0. The parameter α characterizes the fat tails of the

distribution of A2 and the power transformation on the MRS. This survival function produces:

MRS(x;π) =
Eπ[A1(x1 +A1x2)−α]

Eπ[(x1 +A1x2)−α]
=

Eπ[A1(x0 +A1)−α]

Eπ[(x0 +A1)−α]
,

where x0 ≡ x1/x2 denotes a ratio of quantities. Equivalently, we get:

MRS(x;π) =
Eπ[(x0 +A1)−α+1]

Eπ[(x0 +A1)−α]
− x0 ≡ G0(x0), (3.5.9)

which only depends on the ratio x0. Therefore, we have constructed homothetic preferences. By

equation (3.5.9):

e(x) ≡ d

dx
logEπ[(x+A1)−α+1],

is identified up to a multiplicative constant. Therefore, by integration, Eπ[(x+A1)−α+1] is identified

up to α and a multiplicative constant κ. However, as x tends to infinity, this expression is equivalent

to κx−α+1 expE(x), where E(·) is a primitive of e(·). This tail behaviour provides both the

identification of α and κ. This analysis is summarized by the following result:

Corollary 3.2. Under the conditions of Proposition 3.7, if the marginal distribution of A2 belongs

to the Pareto family, the distributions of A1 and A2 are non-parametrically identified.
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3.5.2 Between Model Identification

Once the identification of the consumer’s taste distribution π within each model is solved, we still need

to consider the identification between the models. This analysis is needed to test whether preferences are

consistent with SARA, or SSF, or both. It is important to know whether these two classes of preferences

are nested or non-nested. If they are non-nested, we need to characterize their intersection and define a

general class encompassing both types of preferences.

To illustrate, suppose that the consumer has SSF preferences:

U(x;π) = Eπ
[

min
{
x1 +A1x2, A2

}]
, (3.5.10)

where (i) A1 and A2 are independent, (ii) A1 has distribution π2, and (iii) A2 follows an exponential

distribution (with unit intensity). Under this specification, we obtain:

U(x;π) = 1− Eπ
[

exp(−x1 −A1x2)
]
. (3.5.11)

To clarify this result, observe that, by conditioning on A1, we are left with the expectation of the

minimum of a set containing a constant and a random variable with an exponential distribution. This

utility function is a strictly increasing transformation of a SARA utility function:

Ũ(x;π) = −Eπ
[

exp(−B′x)
]
, (3.5.12)

where (i) B1 follows a point mass at 1, and (ii) B2 has distribution π2. Consequently, these utility

functions, one SARA, and the other SSF, induce the same preference ordering over the consumption set.

3.5.3 Discussion

The possible lack of identification of each consumer’s taste distribution πm has to be taken into account

in the economic interpretation of the results. However, it has to be noted that it does not create difficul-

ties for structural inference, where the (scalar or functional) parameters of interest are the parameters

characterizing the MRS, rather than the parameters characterizing the utility function.

The lack of identification is due to the special structure of the cone of increasing and concave functions

defined on R, and of the extremal elements of this cone. For finite increasing concave functions defined

on R+, it is well-known that the extremal functions are of the type:

h0(x) = min
{
α1x+ β1, α2x+ β2

}
, (3.5.13)

in which (αj , βj) ∈ R̄, for j = 1, 2 (see Blaschke and Pick, 1916), and that any finite positive increasing
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concave function can be written as:

b+ Eπ
[

min(A, x)
]
, (3.5.14)

where b is a positive scalar and π is the distribution of A. Such functions are characterized by b and π.

The set of extremal functions in (3.5.14) is a minimal set of extremal points generating the cone.

Such a property no longer holds for finite positive increasing concave functions defined on R̄. Johansen

(1974) has described a large set of extremal points of the type:

h1(x) = min
{
α1x+ β1, . . . , αnx+ βn

}
, (3.5.15)

for which h1(·) induces a covering with vertices of order 3 (see page 62 in Johansen, 1974), and has

shown that this set is dense in the cone of finite continuous convex functions defined on a convex set in

R (see Theorem 2 in Johansen, 1974). A minimal set of extremal points generating this cone does not

exist. This argument explains why Sections 3.2 and 3.3 consider specific convex subsets generated by

parametric functions.

While we restrict our attention to SARA and SSF preferences (because the stochastic taste parameters

have clear interpretations in these models), other convex hulls could have been considered. For example:

(i) The convex hull generated by the union of the SARA and SSF models—that is, the smallest

structural model containing both of the models in Sections 3.2 and 3.3.

(ii) The convex hull generated by a basis of the form:

U(x; a, ν) =
a1

ν1
xν11 +

a2

ν2
xν22 , (3.5.16)

for every x ∈ R̄ in which a ∈ R and ν ∈ (0, 1)2. This basis corresponds to a first-order expansion

of a utility function (see Johansen, 1969), and contains a Stone-Geary utility function as a limiting

case. Indeed, as ν approaches zero, we obtain: U(x; a) = a1 log x1 +a2 log x2. However, the convex

hull generated by this basis is not flexible enough because it only contains weighted combinations of

xν11 and xν22 . Similarly, the convex hull generated by a Stone-Geary basis only contains Stone-Geary

utility functions, where the weights are the means of the taste parameters:

U(x;π) = Eπ
[
A1 log x1 +A2 log x2

]
= Eπ

[
A1] log x1 + Eπ

[
A2] log x2. (3.5.17)

The Stone-Geary basis U(x; a) above can be adjusted to define another parametric basis. In partic-

ular, consider the transformation ϕ(x) = − exp(−x) to the Stone-Geary utility function. This transfor-

mation yields:

Ũ(x; a) ≡ ϕ(U(x; a)) = − 1

xa11 xa22

. (3.5.18)
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This utility function forms a well-behaved basis because it is strictly increasing with a negative semi-

definite Hessian. While U(x; a) and Ũ(x; a) represent the same preference ordering, they will generate

different families due to the strict concavity of ϕ(·). To illustrate, suppose that the stochastic param-

eters, A1 and A2, are independently distributed with respect to uniform distributions on [0, 1]. This

specification produces:

U(x;π) =
1

2
log x1 +

1

2
log x2 and Ũ(x;π) = −

(
x1 − 1

x1 log x1

)(
x2 − 1

x2 log x2

)
. (3.5.19)

While U(x;π) is a Stone-Geary utility function, Ũ(x;π) is a complicated non-linear function of x1 and

x2. Consequently, an uninteresting basis has been transformed into an interesting one. This procedure

can be completed for any increasing, concave, and twice-differentiable transformation ϕ(·).

3.6 An Illustration

This section shows how to use the SARA and SSF models in a non-parametric framework. First, I specify

the statistical model by introducing an assumption on the observations, and then we discuss statistical

inference. The methodology is illustrated in an application to alcohol consumption using scanner data

concerning individual purchase histories.

3.6.1 Assumptions on Observations

The behavioural models introduced in the previous sections can be completed with an assumption on the

available observations. I consider panel data, indexed by the consumer i and date t. After a preliminary

treatment of the purchase histories, we obtain a large number n of consumers and a fixed number T of

observed dates. In the preliminary treatment, the goods are aggregated into two groups using a common

quantity unit and the dated purchases are aggregated by month (see Section 3.6.3). Recall that, under

Assumption 3.1, we have M distinct segments of homogeneous consumers.

I introduce the following assumption on the observations:

Assumption 3.2 (Observations).

(i) We jointly observe (xit, zit), for all i = 1, . . . , n and t = 1, . . . , T , when xit > 0.

(ii) The individual histories (xit, zit)
T
t=1 are independent given all πm, m = 1, . . . ,M .

(iii) Designs (zit) are exogenous (independent of taste distributions πm).

Assumption 3.2 describes the structure of the observations. It implies that we can imagine taste

parameters (πm) being independently drawn from a Dirichlet process F , designs (zit) being indepen-

dently drawn from some distribution, and consumption xit satisfying xit = X(zit;πmi), where mi is
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the group of consumer i. Many papers assume that consumption xit is positive (see Section IV.A in

Blundell, Horowitz, and Parey, 2017, for this assumption in an application to gasoline demand, as well

as Assumption 2.4 in Chapter 2, for this assumption in an application to the consumption of alcohol);

the SARA and SSF models allow for corner solutions. However, in many datasets (including the dataset

used in the application in Section 3.6), there is a problem of partial observability. Let ỹ denote the

expenditure (prior to normalization), and let p̃j denote the price of good j (prior to normalization).

Usually, we only observe the price p̃j of a good j when the consumer buys a positive quantity of good

j. Then, we only observe (normalized) expenditure y when the consumer buys a positive quantity of

good 2, and we only observe the (normalized) price p when the consumer buys a positive quantity of

both goods (see Crawford and Polisson, 2016, for an approach to revealed preference that deals with

this partial observability problem). This problem explains the specific form of Assumption 3.2(i).

For deriving the asymptotic properties of estimators, it is also necessary to specify the type of

asymptotics to be considered:

Assumption 3.3. Let nm denote the size of the mth homogeneous group.

(i) nmT →∞, as n→∞, for all m = 1, . . . ,M .

(ii) nmT ∼ λmn, for some λm ∈ (λ`, λh), where 0 < λ` < λh < 1, for m = 1, . . . ,M .

(iii) M →∞, as n→∞.

Assumptions 3.3(i) and 3.3(ii) ensure that there are enough observations to non-parametrically es-

timate the demand function associated with the functional parameter πm on a sufficiently large subset

Zm of designs z. Assumption 3.3(iii) guarantees enough filtered parameters π̂m to estimate the under-

lying Dirichlet process F . In some special circumstances, T is large, and Assumption 3.3 can be used

with m = i and M = n—that is, a single consumer per group. Otherwise, grouping of homogeneous

consumers is needed to identify the demand functions on sufficiently large subsets Zm.

3.6.2 Estimation Method

The Dirichlet process is common in Bayesian estimation (see, for instance, Ferguson, 1974, and Li et al.,

2019). This process is useful because it is flexible and, if observations are independently and identically

drawn from an unknown distribution, the posterior distribution of this distribution has a closed-form

expression. That being said, the current framework is much more complicated for two reasons:

(i) The observed consumption choices (Xijt) are not identically distributed because consumers make

decisions at different expenditures and prices.

(ii) It is difficult to derive a closed-form expression for the demand, as a function of the expenditure,

the price, and the functional parameter characterizing taste uncertainty π. It is, therefore, difficult

to derive a closed-form expression for the distribution of Xijt conditional on Zit.
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These features of the model explain why estimation requires specific numerical algorithms. These specific

algorithms have to be able to deal with the non-linear and high-dimensional features of the models. In the

Bayesian framework, the Dirichlet process is fixed. In the hyperparametric framework, it is parameterized

by a vector θ. These parameters have to be estimated and the functional parameters (πm) have to be

filtered. These estimation approaches are described below.

Bayesian Framework

In a pure Bayesian framework, a Dirichlet process is fixed by selecting a mean distribution µ and a

scaling parameter c (see Appendix 3.A). This distribution defines the common prior for the functional

taste parameters (πm). After, the data are used to compute the posterior distribution for the functional

parameters (πm). Under Assumption 3.2, the posterior distribution can be computed separately for each

homogeneous group of consumers:

`(πm|xit, zit, xit > 0, i ∈ Λm, t = 1, . . . , T ),

where Λm denotes the group of consumers with preferences characterized by the taste parameter πm.

This approach does not have to account for the potential identification problem discussed in Section 3.5.

If a specific characteristic of πm is weakly identified, its posterior distribution will be close to the prior

distribution.

In the current framework, the observations (xit, zit), conditional on xit > 0, must satisfy the deter-

ministic first-order conditions implied by the model. These conditions have the following form:

MRS(xit;π) = pit, (3.6.1)

for any observed pair (xit, zit). Equivalently:

Eπ
[
∂U(xit;A)

∂x1

]
= pit Eπ

[
∂U(xit;A)

∂x2

]
, (3.6.2)

for any observed pair (xit, zit). These conditions are moment restrictions, called MRS restrictions. In

the current big data framework, the number of MRS restrictions is very large, typically several hundred

to a thousand. The posterior of πm is simply the distribution of πm given these deterministic restrictions

on πm. If the taste parameters, A1 and A2, are independent with marginal distributions, π1 and π2,

respectively, then the MRS restrictions are bilinear in π1 and π2—specifically, these restrictions are linear

in π1 given π2, and linear in π2 given π1. Later, this property is used to construct a numerically efficient

optimization algorithm for filtering all the πm (see Appendix 3.C).
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Hyperparametric (or Empirical Bayesian) Framework

The hyperparametric (or empirical Bayesian) framework is a complicated non-linear state-space model

with two layers of latent state variables. Such a framework can be characterized as follows:

(i) Deep layer: Functional parameters (πm), drawn from F (parameterized by θ);

(ii) Surface layer: Demand functions X(·;πm) deduced from πm;

(iii) Measurement equations: Observed pairs (xit, zit), given xit > 0.

We have partial observability of the demand function because the value of demand X(z;πm) is observed

at finitely many designs z. Furthermore, unlike most state-space models, the state variables are infinite-

dimensional.

Estimating the Hyperparameter

While it is difficult to derive analytically the distribution of Xit given Zit, it is easy to simulate its

distribution for a given value of θ (see Appendix 3.A for simulations from the Dirichlet distribution).

Therefore, θ can be estimated by the method of simulated moments (MSM), or indirect inference (see

McFadden, 1989, Pakes and Pollard, 1989, and Gouriéroux and Monfort, 1996). That is, θ is estimated

by matching some sample and simulated moments of the pair (Xit, Zit).

To illustrate, consider a pure panel such that M = n.11 The steps are the following:

Step 1: Simulate s = 1, . . . , n draws from a Dirichlet process given the parameter θ. Each draw πs(θ)

is associated with an individual consumer i such that s = i.

Step 2: Compute simulated consumption xsit(θ) by solving the first-order condition in (3.2.12) with

respect to x1 and applying the transformation in (3.2.15) given zit = (yit, pit) and πi(θ).

Step 3: Construct a collection of K moments from the observed and simulated data:

m ≡

[
1

nT

n∑
i=1

T∑
t=1

mk(xit, zit)

]
k

and m(θ) ≡

[
1

nT

n∑
i=1

T∑
t=1

mk(xsit(θ), zit)

]
k

.

Then, numerically solve the following problem:

argmin
θ

∣∣∣∣m−m(θ)
∣∣∣∣, (3.6.3)

in which || · || is a Euclidean norm with the form ||m||2 = m′Ωm, for some positive-definite

K ×K matrix Ω.

11When M < n, we simulate nmT observations for the mth draw from the Dirichlet process.
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Given the estimated hyperparameter θ̂, the taste distributions (πm) must be filtered. This step is

equivalent to applying the Bayesian approach with the estimated Dirichlet distribution as the prior

distribution (see Appendix 3.C).

Under Assumptions 3.1 to 3.3, the estimator for θ is consistent and asymptotically normal, and it

converges at a speed of 1/
√
nT . The derivation of the asymptotic properties of the filtered functional

parameter π̂m is out of the scope of this paper and left for future research.

Filtering the Taste Distributions

Once the hyperparameter θ is estimated, we can filter πm by using the following steps:

Step 1: Draw a taste distribution π̃m from the Dirichlet process given θ̂. Then, by construction, the

taste distribution π̃m is a draw from the prior distribution.

Step 2: Discretize π̃m on a grid of values for the taste parameters, A1 and A2. Let π̄m denote the

result. The aim of this step is to put π̃m on a grid for optimization.

Step 3: Solve the minimization problem:

min
π
||π − π̄m|| s.t. MRS restictions (3.6.1) and unit mass restrictions.

Let π̂∗m denote the solution. This solution approximates a drawing from the posterior.12

Step 4: Replicate these steps to obtain a sequence of solutions: π̂∗m,s, s = 1, . . . , S, where S is the

number of replications. The filtered π̂m is obtained by averaging over all simulations such that:

π̂m =
1

S

S∑
s=1

π̂∗m,s

This procedure involves a high-dimensional argument πm, and a very large number of MRS restrictions.

Indeed, we need several hundred grid points for πm, and, in the application, we have about one-thousand

MRS restrictions, for each m = 1, . . . ,M . If the taste parameters, A1 and A2, are independent, this

procedure can be numerically simplified by using the fact that these restrictions are bilinear (see Section

3.6.2 and Appendix 3.C).

3.6.3 The Data

I use the Nielsen Homescan Consumer Panel (NHCP). Nielsen provides a sample of households with

barcode scanners. Households are asked to scan all purchased goods on the date of each purchase. The

12This solution can be thought of as a projection of π̃m onto the space of discrete probabilities which satisfy the MRS
restrictions in (3.6.1). Imposing these restrictions ex ante would often lead to no solution. This aspect of the problem is
related to finite tests of rationality (see Afriat, 1967).
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Table 3.1. Mean m, standard deviation σ, the ratio σ/m, and quantiles for expenditure ỹ, prices p̃j , nor-
malized expenditure y, and normalized price p. Normalized expenditures y and prices p are conditional
on being defined.

Quantiles

Var. m σ σ/m 0% 25% 50% 75% 100% N

ỹ 52.29 70.62 1.35 0.00 13.28 28.17 62.97 2,767.76 63,972
p̃1 70.36 44.19 0.62 0.05 46.41 62.55 83.41 2,893.65 33,077
p̃2 61.33 326.93 5.33 0.03 29.29 48.56 75.14 39,900.85 45,518

y 1.60 3.48 2.17 0.00 0.27 0.74 1.83 228.57 45,518
p 2.20 4.06 1.54 0.00 0.89 1.37 2.29 139.76 14,659

prices are entered by the households or linked to retailer data by The Nielsen Company. The households

that agree to participate are compensated through benefits and lotteries.

I focus on the consumption of alcoholic drinks (see Manning et al., 1995, for an application to alcohol

consumption in economics). I classify drinks by type. Good 1 contains beers and ciders.13 Good 2

contains wines and liquors. I disregard all non-alcoholic beers, ciders, and wines. We are left with

30,635 beers and ciders, and 108,439 wines and liquors, for a total of 139,074 drinks. I convert all

measurement units to litres of alcohol by first converting all units to litres and then multiplying by the

standard alcohol by volume (ABV) in each subgroup—specifically, 4.5% for beer and cider, 11.6% for

wine, and 37% for liquor. For example, if a household buys two packs of six bottles of beer and each bottle

contains 355 millilitres of beer, then the household buys 4.26 litres of this beer, or 4.26× 0.045 = 0.231

litres of alcohol. I use the standard ABV in each subgroup as a result of data limitations. The sample

only contains purchases made at stores, not purchases made at bars, or restaurants.

Measuring quantities in litres of alcohol has at least three advantages: (i) it can account for a quality

effect, (ii) it is appropriate for analyzing most relevant structural objects (e.g. the effect of a change in

taxation on alcohol consumption), and (iii) it yields continuous quantities, permitting the application of

standard tools in consumer theory (which could not be used if quantities were measured in, for example,

bottles), and avoiding some common identification issues in the literature.

I restrict our sample to purchases made from August to November in 2016. This relatively short win-

dow is used to diminish the impact of changing tastes and product availability, and to avoid most federal

holidays in the United States that are often associated with alcohol consumption such as Independence

Day, Christmas Day, and New Year’s Eve. The sample contains 28,036 households. Some additional

details of this restricted sample are placed in Appendix 3.D.

The dated purchases are aggregated by month. For each household and month, the prices are

constructed by dividing the total expenditure for each aggregate good (after accounting for the value

of coupons) by the amount of alcohol of that aggregate good purchased by the household, when this

13The NHCP classifies ciders as wine, by default. I reclassify these beverages using product descriptions because most
ciders have a low alcohol by volume (ABV).
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Table 3.2. Proportions of observations by type.

x2 = 0 x2 > 0

x1 = 0 0.4298 0.2751
x1 > 0 0.1642 0.1307

amount is strictly positive. Then, I normalize by the price of good 2. This procedure yields four

monthly observations per household for a total of 112,144. A total of 63,936 observations have positive

consumption such that xit > 0. Table 3.1 gives summary statistics conditional on xit 6= 0. The prices

(pit) are conditional on being well-defined (see the discussion of partial observability on pages 23 and

24). For the interpretation of the results, recall that ỹ is the expenditure (prior to normalization), and

that p̃j is the price of good j (prior to normalization).

There are four regimes of observations: (i) zero expenditure on all goods, (ii) zero expenditure on

good 1 and strictly positive expenditure on good 2, (iii) strictly positive expenditure on good 1 and

zero expenditure on good 2, and (iv) strictly positive expenditure on all goods. Table 3.2 provides

the proportion of observations in each regime, and shows a large proportion of observations with zero

expenditure. Recall, under Assumption 3.2, designs zit are drawn from a distribution. Therefore, we

can interpret this result as a mass at zero in the marginal distribution of expenditure.

Figure 3.4 displays the sample distribution of expenditure ỹit by regime: the distribution of expendi-

ture ỹit conditional on xit > 0 is on the left; the sample distributions of expenditure ỹit for the two other

regimes with positive expenditure are on the right. The shape of the sample distribution of expenditure

ỹit does not appear to vary all that much with the regime. That being said, the sample distribution

conditional on xit > 0 has more probability attributed to higher expenditures.

Figure 3.5 compares the sample distributions of prices p̃j by regime: the sample distributions of p̃1

are on the left; the sample distributions of p̃2 are on the right. Although the sample distribution of p̃1

differs from the sample distribution of p̃2, these distributions do not seem to be affected by the regime.

Figure 3.6 displays the sample distributions of (normalized) designs zit = (yit, pit) and the compo-

nents of consumption xit given xit > 0. As expected, the components of consumption xit are increasing

in expenditure yit. Furthermore, the first component of consumption xit is more affected by changes in

the price pit than the second component.

Since I consider a rather short window of time, I follow the segmented population approach. I seg-

ment the population by state. Large states (e.g. California) are segmented again by county. Specifically,

a county is given its own segment if it has more than 70 observations with positive consumption and

it is in a state with more than 1,000 observations with positive consumption. We are left with a total

of 65 segments, each corresponding to a state or county. The smallest segment is Wyoming, containing

15 observations with positive consumption; the largest state is Florida (after removing Broward, Hills-

borough, Palm Beach, Pinellas, and Miami-Dade counties), containing 880 observations with positive
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Figure 3.4. Sample Distributions of Expenditure ỹ by Regime. On the left, I illustrate the
sample distribution conditional on x1 > 0 and x2 > 0; on the right, the light histogram illustrates the
sample distribution conditional on x1 = 0 and x2 > 0, and the dark histogram illustrates the sample
distribution conditional on x1 > 0 and x2 = 0.

Figure 3.5. Sample Distributions of Prices p̃j by Regime. On the left, the light histogram
illustrates the sample distribution of p̃1 conditional on x1 > 0 and x2 = 0; on the right, the light
histogram illustrates the sample distribution of p̃2 conditional on x1 = 0 and x2 > 0; in each plot, the
dark histogram illustrates the sample distribution conditional on x1 > 0 and x2 > 0.
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Figure 3.6. Sample Distributions of Designs zit and Consumption. These figures are conditional
on xit > 0. On the left, colour describes the quantity of good 1; on the right, colour describes the
quantity of good 2.

expenditure; the mean number of observations with positive consumption per segment is roughly 226.

Figure 3.7 displays the sample distributions of (normalized) designs zit = (yit, pit) and the first

component of consumption xit given xit > 0 in two of the larger segments: California (after removing

Almeda, Los Angeles, Orange, Riverside, Sacramento, San Bernardino, and San Diego counties), and

Florida (after removing Broward, Hillsborough, Palm Beach, Pinellas, and Miami-Dade counties).

Figure 3.8 displays the Nadaraya-Watson (kernel) estimates of the demand function for beer condi-

tional on xit > 0 in California and Florida over a subset of the domain of designs. Demand for beer in

California is lower and less responsive to price changes than in Florida. Figure 3.9 displays Engel curves

for good 1 in California and Florida given p ≡ p̃1/p̃2 = 4.14 These Engel curves cross.

3.6.4 Estimation Results

As an illustration, I consider the SARA model in the hyperparametric framework. I assume that the taste

parameters, A1 and A2, are independent. Under this assumption, the taste uncertainty is characterized

by the marginal distributions, π1 and π2. The marginal distribution πj of Aj is independently drawn

from a Dirichlet process Fj , j = 1, 2. The mean of Fj is a log-normal distribution with parameters µj

and σj , and the scale parameter of Fj is cj . The utility function corresponding to this log-normal mean

distribution, say π̄j , has a quasi closed-form expression. Indeed, under this distribution, we must have:

log(Aj) = µj + σjεj , ∀j = 1, 2,

14This price is chosen to be in a sufficiently dense region of the sample distribution (see Figure 3.7).
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Figure 3.7. Sample Distributions by State. These figures are conditional on xit > 0. California is
shown on the top, and Florida is shown on the bottom. On the left, colour describes the quantity of
good 1; on the right, colour describes the quantity of good 2.

Figure 3.8. Demand. Nadaraya-Watson estimates of the demand function for good 1 conditional on
xit > 0 in California (left) and Florida (right).
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Figure 3.9. Engel Curves. Engel curves for good 1 in California (black) and Florida (blue). These
curves violate monotonicity because they cross.

where εj is distributed with respect to a standard normal distribution. Then:

Eπ̄j [exp(−Ajxj)] = Eπ̄j [exp(− exp(µj + σjεj)xj)],

=
1√

1 + w(xj exp(µj)σ2
j )

exp

{
− 1

2σ2
j

w(xj exp(µj)σ
2
j )2 − 1

σ2
w(xj exp(µj)σ

2
j )

}
,

where w(x) is the Lambert function, defined by the implicit equation:

w(x) exp(w(x)) = x,

(see equation (1.3) in Asmussen et al., 2016). By drawing from the Dirichlet process, we will draw

a stochastic utility function around the closed-form expression above. The hyperparameter θ has six

components such that:

θ = (µ1, σ1, c1, µ2, σ2, c2).

The Hyperparameter

As described in Section 3.6.2, the first step involves estimating the hyperparameter θ using the Method

of Simulated Moments (MSM). The hyperparameter θ is calibrated by using the following (sample and

simulated) moments computed for all of the 63,936 observations with positive consumption:

(i) marginal moments of (Xit);

(ii) cross-moments of (logXit, logPit) and (logXit, log Yit);
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(iii) cross-moments of (Xit, Pit), (Xit, Yit), (Xit, logPit), and (Xit, log Yit).

The moments in (ii) are the moments used in the Almost Ideal Demand System (see Deaton and Muell-

bauer, 1980a); the moments in (iii) are introduced in order to capture risk effects by comparison with

the moments in (ii). The optimum is found using a random search algorithm over a sufficiently big

support.15

To apply MSM, it is necessary to compute simulated consumption xsit(θ) for every observation, at

each step of the optimization algorithm. This procedure is computationally costly. Note that, the

number of simulated observations with positive consumption is stochastic, and not necessarily equal to

the number of observations with positive consumption in the sample. This aspect has no impact on the

consistency of the MSM estimator.

The estimated hyperparameter θ̂ is:

θ̂ = (0.7987, 3.5516, 45.0951, 0.1201, 3.6597, 3.5544). (3.6.4)

Therefore, the median level of risk aversion for the mean of the Dirichlet process16 for A1 is exp(0.5495) '

2.2226, and the median level of risk aversion for the mean of the Dirichlet process for A2 is exp(0.8738) '

1.1276. The fact that µ1 is smaller than µ2 is expected: Since quantities are measured in terms of volume

of alcohol, this result is consistent with the faster overall intake of alcohol when consuming drinks with

a higher ABV. Moreover, the distribution π1 of A1 is much more concentrated around its mean than

the distribution π2 of A2, as the scaling parameter c1 = 45.0951 for π1 is much larger than the scaling

parameter c2 = 3.5544 for π2.

I do not report any standard errors because they are automatically small from the large number

of observations. Indeed, the standard significance test procedures (such as comparing a t-statistic to

the critical value of a standard normal at the 5% significance level) are not relevant in this big data

framework. The highest degree of uncertainty concerns the filtered functional parameters (π̂m) since πm

is a high-dimensional parameter and the number of observations in each segment is much smaller.

The means of these Dirichlet processes are displayed in the left panel in Figure 3.10. The right panel

displays the indifference curves associated with utility levels −0.1000, −0.0800, and −0.0680 for a draw

from the Dirichlet process given θ̂.

Figure 3.11 displays the Q-Q plots for two draws (πs1, π
s
2), s = 1, 2, from the Dirichlet process given θ̂.

In particular, I plot the quantiles of the realization of the distribution πj of log(Aj) against the quantiles

of the normal distribution given the estimated hyperparameters (µ̂j , σ̂j), for j = 1, 2. If these quantiles

coincide exactly, they will lie on the 45-degree line. As expected, these Q-Q plots lie approximately

around the 45-degree line. The draws (πs1), s = 1, 2, for π1 are closer the 45-degree line and “more

15Random search is more efficient than grid search in hyperparameter optimization (Bergstra and Yoshua, 2012).
16This is not the absolute risk aversion of the utility function for the log-normal mean distribution which depends on

the consumption level and has to be computed with a modified density.
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Figure 3.10. On the left, black shows the density of the mean of the Dirichlet process for A1, and blue
shows the density of the mean of the Dirichlet process for A2. The x-axis is in log-scale. For scale:
exp(−5) ' 0.0067 and exp(5) ' 148.4131. The figure on the right displays indifference curves associated
with these distributions.

continuous” than the draws (πs2), s = 1, 2, for π2 since c1 > c2.

Figure 3.11 illustrates how one might use the (estimated) hyperparameter for interpretation. Specifi-

cally, it is used to deduce the mean of the Dirichlet process, which is used as a benchmark for comparison

with a drawn or filtered functional parameter πm.

3.6.5 Taste Distributions

This section uses the filtering approach described in Section 3.6.2 to recover πm. In the SARA model,

the MRS restriction in (3.6.2) is:

Eπ[A1 exp(−A′xit)] = pit Eπ[A2 exp(−A′xit)].

When A1 and A2 are independent, this expression becomes:

Eπ1 [A1 exp(−A1xi1t)]Eπ2 [exp(−A2xi2t)]

= pit Eπ1
[exp(−A1xi1t)]Eπ2

[A2 exp(−A2xi2t)].
(3.6.5)

To filter πm, these restrictions have to be imposed for every observation with positive consumption

xit associated with segment Λm. In California, there are 688 MRS restrictions, and, in Florida, there

are 880. Appendix 3.C shows how to numerically solve the resulting optimization problem given the

bilinearity of the MRS restrictions under independence.

The marginal taste distributions were filtered using a grid with 500 points between exp(−10) and

exp(10), equally spaced on the log-scale. All draws from the estimated prior were simulated by the
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Figure 3.11. The Q-Q plots for two draws from the Dirichlet process given θ̂: On the left, the quantiles
of log(A1) are plotted against the quantiles of the normal distribution given (µ̂1, σ̂1); on the right, the
quantiles of log(A2) are plotted against the quantiles of the normal distribution given (µ̂2, σ̂2). In each
figure, the green line is the 45-degree line.

stick-breaking method given J = 1000 breaks (see Appendix 3.A). Exactly S = 100 draws from the

posterior were used to filter each distribution.

Figure 3.12 displays the Q-Q plots for the filtered taste parameters π̂m for California and Florida.

As in Figure 3.11, the (estimated) hyperparameter is used to construct a benchmark for comparison.

As expected, the filtered taste parameters are rather different from this benchmark. Here, the role of

the estimated prior distribution diminishes with the number of observations. In both states, the slope

on the left is steeper than the 45-degree line, suggesting that the posterior mean distribution for A1 is

more “dispersed” than its estimated prior mean distribution. The convexity of these curves also suggests

fatter tails.

For the structural interpretation of these plots, assume that (i) the preferences are SARA, (ii) the

taste parameters are independent, (iii) the marginal distribution of A1 is the same in both states, and

(iv) the marginal distribution of A2 “shifts” such that π∗2(A2) = π2(cA2), where π2 and π∗2 denote the

marginal distributions of A2 in these states. Under these assumptions:

U(x1, x2;π∗) = U(x1, cx2;π), (3.6.6)

and solving the utility maximization problem in (3.2.13) yields:

X1(z;π∗) = X1(cz;π) and X2(z;π∗) =

(
1

c

)
X2(cz;π). (3.6.7)

Similarly, if there is a “shift” in the marginal distribution of A1 and the marginal distribution of A2 is
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Figure 3.12. The Q-Q plots for the filtered taste distributions for California (black) and Florida (blue):
On the left, the quantiles of log(A1) are plotted against the quantiles of the normal distribution given
(µ̂1, σ̂1); on the right, the quantiles of log(A2) are plotted against the quantiles of the normal distribution
given (µ̂2, σ̂2). In each figure, the green line is the 45-degree line.

the same in both states, we obtain:

X1(z;π∗) =

(
1

c

)
X1

(
y,
p

c
;π
)

and X2(z;π∗) = X2

(
y,
p

c
;π
)
. (3.6.8)

The relationships given in (3.6.7) and (3.6.8) suggest that there exists a complicated non-linear relation-

ship between such demand functions. Therefore, we cannot immediately deduce from Figure 3.12 which

state has a higher demand for beer. For a more formal analysis, the utility functions associated with

each posterior mean taste distribution must be used to derive a posterior MRS, or a posterior demand

function.

This analysis has to be completed with a discussion of accuracy. In this non-parametric framework,

the posterior distributions of π1 and π2 are infinite-indimensional and cannot be represented. However,

posterior distributions of any scalar transformation of π1 and π2 can be derived using simulation. In

this respect, it is important to know which scalar objects are of interest. Typically, we are interested in

the MRS evaluated at a specific bundle, say x0, or counterfactual demand, corresponding to a particular

design, say z0 = (y0, p0). Figure 3.13 displays the posterior distributions of the MRS, evaluated at two

bundles, (1, 1) and (1, 2), for California and Florida. In both states, these distributions are approximately

log-normal (with is consistent with Dobronyi and Gouriéroux, 2020), and the posterior for MRS(1, 2;π)

has a much longer tail than the posterior for MRS(1, 1;π), implying that, the quantity of good 2 that

must be given to the consumer in order to compensate her for one unit of good 2 (and keep her just as

happy) is larger, on average, when she has more of good 2. This tail is longer in California.

The filtered taste distributions in Figure 3.12 are obtained by applying the algorithm in Appendix 3.C

and forcing the density πm to be non-negative at each iteration. The existence of negative “probabilities”
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Figure 3.13. Posterior Marginal Rate of Substitution. The posterior distributions for MRS(1, 1;π)
(black) and MRS(1, 2;π) (blue) for California (left) and Florida (blue).

can be a result of numerical uncertainty, the choice of grid, or misspecification. Specifically, it can arise if

the consumer in segment Λm does not maximize her SARA/SSF utility function (or any utility function)

subject to the linear budget constraint. By analyzing these negative probabilities, we can construct a

measure of the deviation from rationality. To illustrate, let π+
k = max{0, πk} and π−k = max{0,−πk},

respectively, denote the positive and negative components of the elementary probability πk associated

with the kth grid point. The following ratio:

BR =

∑
k π
−
k∑

k(π−k + π+
k )
, (3.6.9)

is a measure of bounded rationality. This ratio ranges between 0 and 1. The closer this ratio is to 1,

the less compatible the data are with the hundreds of MRS restrictions imposed by the chosen model.

This ratio is related to a subset of the literature concerned with such measures. Existing measures

include Afriat’s Efficiency Index (Afriat, 1967; Varian, 1990), and the Money Pump Index (Echenique

et al., 2011). In general, these indices are used to measure a single consumer’s deviation from rationality

by evaluating how “close” her choices are to satisfying the Generalized Axiom of Revealed Preference

(GARP), a necessary and sufficient condition for a finite number of choices to be consistent with the

maximization of any locally non-satiated utility function. In our framework, the BR ratio can be used

to measure the violation of the homogeneous segment assumption. Table 3.3 displays the BR ratios for

California and Florida. The BR ratio for π1 is smaller than the ratio for π2 in each state; these ratios

are roughly the same across states.
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Table 3.3. BR ratios for California and Florida.

State π1 π2

California 0.15 0.20
Florida 0.17 0.21

3.7 Concluding Remarks

This chapter is one among pioneering papers attempting to tackle the challenges of performing structural

demand analysis with scanner data (see also Burda et al., 2008, 2012, Crawford and Polisson, 2016, Guha

and Ng, 2019, Chernozhukov et al., 2020, and Chapter 2). The recent availability of scanner data permits

new developments in the analysis of consumer behaviour. Here, I have shown that, by introducing

homogeneous segments of consumers, we can consider a model of consumption with non-parametric

preferences and infinite-dimensional heterogeneity, not only from a theoretical point-of-view, but also

from a practical one. The distribution of individual heterogeneity in the population can be estimated,

and the underlying non-parametric preferences can be filtered by using appropriate algorithms.

We developed an analysis for two goods for exposition. This feature of our analysis leaves the question:

Can the methods developed in this paper be extended to a framework with, say, 100 goods? A completely

unconstrained non-parametric analysis would encounter the curse of dimensionality. Specifically, we

would need to estimate the distribution of the utility function (a non-parametric function with, in this

scenario, 100 arguments). This task would be infeasible, even in our big data framework. But, the

SARA model with independent taste parameters is a constrained non-parametric model. The structure

of the SARA model reduces the non-parametric dimension of the problem, making it feasible. Indeed,

when taste parameters are independent, we only need to estimate 100 one-dimensional distributions.

A similar remark applies to the algorithm used to filter the taste distributions: The two steps based

on the bilinear form of the MRS restrictions in a two good setting can be replaced with 100 successive

steps based on the multilinear form of MRS restrictions in a 100 good setting, without increasing the

numerical complexity.

Many of the results in this paper require taste parameters to be independent, but this requirement

can be relaxed. For example, we can always consider a SARA model with the following form:

U(x;A) = − exp(−(Ac +A1)x1 − (Ac +A2)x2), (3.7.1)

where Ac is a common component, and Aj is a good-specific taste parameter, for each j = 1, 2. In such a

framework, independence between Ac, A1, and A2 does not imply independence between the parameters:

A∗1 = Ac +A1 and A∗2 = Ac +A2, (3.7.2)
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but it does reduce the dimensionality of the problem: Instead of introducing a joint distribution π on

a space of dimension 2, the model only depends on three distributions on a space of dimension 1. This

specification avoids the curse of dimensionality. (See Appendix 3.E for a discussion of identification in

this case with taste dependence.)

In this paper, consumers are assumed to be rational, and divided into homogeneous segments. Since,

in each segment, the demand function can be non-parametrically estimated over a subset of its domain,

the analysis can be continued to develop a test of the homogeneity of each segment, or, more generally,

a non-parametric method for constructing homogeneous segments.

The approach developed in this paper uses standard ideas from consumer theory to make inference.

This approach is appropriate when both quantities and prices have continuous supports. This feature

makes this approach valid for some levels of good, consumer, and date aggregation. Hence, this approach

can be used for, say, evaluating the effect of alcohol tax on alcohol consumption, but is unreasonable for

analyzing how a particular consumer will choose between hundreds of different brands of whiskey. To

our knowledge, the tools needed to solve such a problem have not been developed yet.

3.A The Dirichlet Process

In this appendix, I briefly review the definition and properties of the Dirichlet process, and then describe

how to simulate from the Dirichlet process (see Ferguson, 1974, Rolin, 1992, Sethuraman, 1994, Lin,

2016, and Li et al., 2019).

3.A.1 Definition and Properties of the Dirichlet Process

For exposition, let us consider the Dirichlet distribution, then the Dirichlet process:

(i) Dirichlet Distribution:

Let DJ(α) denote the J-dimensional Dirichlet distribution with density:

fα(q) =
Γ
(∑J

j=1 αj
)∏J

j=1 q
αj
j∏J

j=1 Γ(αj)
, (3.A.1)

for every q ∈ [0, 1]J such that
∑J
j=1 qj = 1, where α ∈ RJ++ denotes a J-dimensional vector of

positive parameters. If a random vector (Q1, . . . , QJ) has a Dirichlet distribution DJ(α), then:

E[Qj ] = ᾱj and V (Qj) =
ᾱj(1− ᾱj)

1 +
∑J
j=1 αj

, (3.A.2)

where ᾱj = αj/
∑J
j=1 αj .

(ii) Dirichlet Process:
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In the SARA and SSF models, there are two taste parameters, A1 and A2. The probability

distribution π of (A1, A2) is defined on R2
+. Therefore, in this section, I describe the Dirichlet

process in this special case. Let B0 denote the Borel sets associated with R2
+, F denote the set of

probability measures defined on (R2
+,B0), and B1 denote the σ-algebra consisting of the Borel sets

associated with the topology of weak convergence on F . Let µ denote a (deterministic) probability

measure defined on (R2
+,B0), and let c denote a strictly positive scalar. A process G with values

in F is a Dirichlet process with functional parameter µ and scaling parameter c if, for every finite

and measurable partition {C1, . . . , CJ} of R2
+, the random vector

[
G(C1), . . . , G(CJ)

]′
has a J-

dimensional Dirichlet distribution given α =
[
cµ(C1), . . . , cµ(CJ)

]′
. There exists a Dirichlet process

for every probability measure µ defined on (R2
+,B0) and scaling parameter c. The distribution of

the Dirichlet process is a probability measure defined on (F ,B1), whose realizations are almost

surely discrete probability measures defined on (R2
+,B0), assigning probability one to the set of

all discrete probability measures defined on (R2
+,B0). The support of the distribution of the

Dirichlet process is a set of distributions with support contained in the support of cµ (Ferguson,

1974). The functional parameter µ (sometimes called the base distribution) can be thought of

as the mean of the Dirichlet process—indeed, for any measurable set C in R2
+, the mean of the

Dirichlet distribution in (3.A.2) yields E[G(C)] = µ(C). Therefore, in the current framework,

µ represents the expected uncertainty on taste parameters. Intuitively, the scaling parameter

c describes the “strength” of discretization: When c is large, the realizations of the Dirichlet

process are concentrated around µ; loosely, as c tends to infinity, the realizations become “more

continuous.”

3.A.2 Simulating a Dirichlet Process

A Dirichlet process is easy to simulate given µ and c. There are a number of ways to simulate a

realization—this section outlines the stick-breaking method, appropriate for drawing under the indepen-

dence of A1 and A2, based on the construction of the Dirichlet process in Sethuraman (1994).

Let B(α1, α2) denote the beta distribution with continuous density:

f(q) =
Γ(α1 + α2)qα1

1 qα2
2

Γ(α1)Γ(α2)
, (3.A.3)

on the simplex {(q1, q2) ≥ 0 : q1 + q2 = 1}, in which Γ denotes the gamma function, and α1, α2 > 0 are

positive scalar parameters. Under the independence of A1 and A2, it is sufficient to be able to make

a draw from a Dirichlet process whose realizations are distributions on [0,∞). Let µ∗ and c∗ denote

the mean and scaling parameter of this Dirichlet process. We can simulate from this process using the

following steps:

Step 1: For large L ≥ 1, independently simulate W1, . . . ,WL ∼ B(1, c∗).
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Figure 3.14. A simulated realization from the Dirichlet process given log-normal µ∗ with mean 0 and
standard deviation 1 (where these parameters are interpreted on the log-scale) and scaling parameter
c = 100. This realization was simulated using the stick-breaking method given L = 100.

Step 2: Compute W ∗1 = W1, and:

W ∗` = W`

`−1∏
j=1

(1−Wj), ∀` = 2, . . . , L. (3.A.4)

Step 3: Independently simulate V1, . . . , VL ∼ µ∗.

Step 4: Define:

G(C) =

L∑
`=1

W ∗` δV`(C), ∀C ⊆ R2
+, (3.A.5)

where δv denotes a point mass at v ∈ R2
+.

Theoretically, if we could simulate an infinite number of draws, then this procedure would produce a

realization of the Dirichlet process associated with functional parameter µ∗ and scaling parameter c∗.

Since L is finite, the resulting probability measure G is a truncated approximation of a realization of

such a process. Figure 3.14 displays a simulated realization from the Dirichlet process given log-normal

µ∗ with mean 0 and standard deviation 1 (where these parameters are interpreted on the log-scale)

and scaling parameter c = 100. This realization was simulated using the stick-breaking method given

L = 100.
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3.B Integrability

In each model, the Hessian of the utility function U(x;π) is negative definite, implying that the demand

function X(z;π) is invertible in the second regime (see Chapter 2). Invertibility can also be analyzed

using the indifference curves of U(x;π), or the Slutsky coefficient ∆x(z). As a by-product, this analysis

can yield new properties of the moment generating function (MGF).

3.B.1 SARA Model

Suppose A1 and A2 are independent. Let Ψj denote the Laplace transform of Aj , for j = 1, 2. With

this notation, we can write:

logU(x;π) = log Ψ1(x1) + log Ψ2(x2). (3.B.1)

The indifference curve gπ(·, u) associated with U(x;π) is obtained by solving:

log Ψ1(x1) + log Ψ2(x2) = log u, (3.B.2)

for x2. This procedure leads to:

gπ(x1, u) = (log Ψ2)
−1

(log u− log Ψ1(x1)) . (3.B.3)

In general, demand is invertible if the indifference curves are strictly convex such that:

∂2gπ(x1, u)

∂x2
1

> 0, (3.B.4)

for every x1 > 0, and every attainable u < 0. When preferences are SARA, we obtain:

d2

dv2

[
(log Ψ2)

−1
]

(log u− log Ψ1(x1))

(
d log Ψ1(x1)

dx1

)2

− d

dv

[
(log Ψ2)

−1
]

(log u− log Ψ1(x1))
d2 log Ψ1(x1)

dx2
1

> 0,

(3.B.5)

for every x1 > 0, and every attainable u < 0. These inequalities, involving two MGFs, are always

satisfied. Consequently, we have derived a new property of the MGF, as described in the introduction

of this appendix.

3.B.2 SSF Model

If preferences are SSF, it is rather challenging to derive a closed-form expression for the indifference

curve. We can, instead, write the integrability condition using the condition on the bordered Hessian

in Lemma 2.1 in Chapter 2, but, for both brevity and exposition, let us simply restrict our attention to
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the general specification of utility in the example in Section 3.3.3 and check that integrability holds for

any Laplace transform. Because the strict convexity of the indifference curves is equivalent to the strict

negativity of the Slutsky coefficient ∆x(z), it is sufficient to check whether ∆x(z) is strictly negative.

We obtain:

∆x(z) =
∂X1(z;π)

∂p
+X1(z;π)

∂X1(z;π)

∂y
= − 1

λp3

d

dv

(
d log Ψ

dv

)−1(
−1

p

)
. (3.B.6)

It is sufficient to show that:
d

dv

(
d log Ψ

dv

)−1(
−1

p

)
, (3.B.7)

is strictly positive. To do this, consider the following derivatives:

d log Ψ(v)

dv
= −E[A1 exp(−A1v)]

E[exp(−A1v)]
,

and
d2 log Ψ(v)

dv2
=

E[A2
1 exp(−A1v)]

E[exp(−A1v)]
−
(
E[A1 exp(−A1v)]

E[exp(−A1v)]

)2

= Vπ̃(A1) > 0,

(3.B.8)

where the variance is with respect to the transformed density:

exp(−A1v)

E[exp(−A1v)]
π(v). (3.B.9)

Therefore, d log Ψ
dv is increasing, and so is its inverse

(
d log Ψ
dv

)−1

. Thus, ∆x(z) is negative.

3.C Numerical Optimization

The optimization problem for filtering can be written as:

min
π1,π2

(π1 − π̂1)′(π1 − π̂1) + (π2 − π̂2)′(π2 − π̂2)

s.t. MRS restrictions (3.6.2), e′π1 = 1, and e′π2 = 1,

(3.C.1)

where π1 and π2 are written on a sufficiently large discrete grid for A1 and A2, and e = (1, . . . , 1)′. This

optimization problem can be difficult due to the dimension of the problem. The objective function is

minimized with respect to the total number 2J of grid points in π1 and π2, which is intentionally chosen

to be very large (at least several hundred), and the number of constraints is Nm, where Nm denotes the

number of observations with positive consumption xit in segment Λm, which is typically around 1,000.

Note, 2J has to be larger than Nm for identification. Therefore, it is important to find a tractable

algorithm for such a problem.

We can use the fact that the MRS restrictions are bilinear in π1 and π2. Indeed, these constraints
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can be written as:

A1(π2)π1 = b1(π2) or A2(π1)π2 = b2(π1). (3.C.2)

To illustrate, consider the SARA model, and let a1j and a2j , j = 1, . . . , J , denote the locations of the

points in the grids for A1 and A2, respectively. Moreover, let π1 = (π1j) and π2 = (π2j) denote the

elementary probabilities on (a1j) and (a2j), respectively. Under the independence of A1 and A2, the

MRS restrictions have the form:

J∑
j=1

[π1ja1j exp(−a1jxi1t)]

J∑
j=1

[π2j exp(−a2jxi2t)]

−pit
J∑
j=1

[π1j exp(−a1jxi1t)]

J∑
j=1

[π2ja2j exp(−a2jxi2t)] = 0,

for every i ∈ Λm and every t with xit > 0. The closed-form expressions for A1(π2), b1(π2), A2(π1), and

b2(π1) can be easily deduced. The unit mass restrictions can also be explicitly written as:

J∑
j=1

π1j = 1 and

J∑
j=1

π2j = 1.

The equivalent expressions in (3.C.2) can be used to solve the optimization problem in (3.C.1) by

using a succession of optimization problems with smaller dimensions (see Gouriéroux et al., 1990, and

Van Rosen, 2018). Precisely, let π1(k) and π2(k) denote the solutions for π1 and π2 at the kth step of

the optimization algorithm. Given π2(k), π1(k + 1) is defined as the solution to:

min
π1

(π1 − π̂1)′(π1 − π̂1) s.t. A1[π2(k)]π1 = b1[π2(k)] and e′π1 = 1, (3.C.3)

and, similarly, π2(k + 1) is defined as the solution to:

min
π2

(π2 − π̂2)′(π2 − π̂2) s.t. A2[π1(k + 1)]π2 = b2[π1(k + 1)] and e′π2 = 1. (3.C.4)

If this algorithm numerically converges, then the limit is the solution to the original optimization problem

in (3.C.1). Moreover, π1(k) and π2(k) have closed-form solutions:

Proposition 3.8. The solution to (3.C.3) is equal to:

π1(k + 1) = π̂1 +A∗1[π2(k)]′
{
A∗1[π2(k)]A∗1[π2(k)]′

}−1{
b∗1[π2(k)]−A∗1[π2(k)]π̂1

}
, (3.C.5)

where A∗j and b∗j encompass the MRS constraint and the unit mass contraint together.
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Proof. The optimization problem in (3.C.1) is of the following type:

min
w

(w − w0)′(w − w0) s.t. Aw = b.

Let λ denote a Lagrange multiplier. The first-order conditions are, then:

2(w − w0)−A′λ = 0 and Aw = b. (3.C.6)

The first condition can be written as:

w = w0 +
1

2
A′λ. (3.C.7)

By plugging this expression for w into the second condition, we obtain:

λ

2
= (AA′)−1(b−Aw0). (3.C.8)

Together, (3.C.7) and (3.C.8) imply:

w = w0 +A′(AA′)−1(b−Aw0).

This expression is exactly the form of the solution in the statement of this proposition.

Remark 3.1. Instead of minimizing the `2-distance between πj and π̂j , we could use an information

criterion, as in Kitamura and Stutzer (1997). However, we would no longer obtain a closed-form solution

for π1(k) and π2(k), and we would have to solve a non-linear system in λ with dimension Nm.

Remark 3.2. The inversion of AA′ is numerically feasible, but can be made more robust numerically

by including a regularization. In particular, it can be replaced with the inversion of AA′ + εI, where

ε > 0 is a small regularization parameter. This regularization by shrinkage (see, for example, Ledoit and

Wolf, 2004) is preferable to the machine learning practice which replaces AA′ with the diagonal matrix

made up of the diagonal elements of AA′. It is related to Tikhonov regularization, which can be used

to handle the case in which the number of restrictions exceeds 2J . In practice, it can also be easier to

solve the system in (3.C.6), instead of using (3.C.5), and, depending on the case, it can be better to

regularize A′A, rather than AA′.

Remark 3.3. The optimization problem in (3.C.1) has not explicitly accounted for the positivity of π1

and π2. We can incorporate positivity by adjusting after each step of the algorithm.
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Figure 3.15. Daily Purchases. On the left, I illustrate daily expenditure for a single consumer in
October of 2016. On the right, we illustrate the number of units purchased by this consumer. Light
shaded bars represent all purchases and dark shaded bars represent alcohol-related purchases.

3.D The Nielsen Database

In this appendix, I provide more information about the Nielsen Homescan Consumer Panel (NHCP).

First, I describe the individual records, then the representativeness of the restricted sample.

3.D.1 Individual Records

As mentioned in the text, all purchases are continuously recorded by each consumer. The left panel in

Figure 3.15 displays the daily (total and alcohol-specific) expenditures of a given consumer in October of

2016. During this month, this consumer purchased 166 units of 97 distinct goods (prior to aggregation).

The right panel in Figure 3.15 displays the daily number of units purchased by this consumer. These

purchases were all made at three distinct retailers.

3.D.2 Representativeness of Sample

Let us now consider the demographics of the households in the data and compare these demographics

with the Current Population Survey (CPS). See Guha and Ng (2019) and Chapter 2 for additional

summary statistics.

Table 3.4 gives the distribution of household size in the sample and the CPS. These distributions are

similar. The sample has a slightly smaller proportion of households with a single member, and a slightly

larger proportion of households with two members. This difference can be explained by single-member

households simply buying less alcohol.

Table 3.5 describes the distribution of household income in the sample and the CPS. Once again,

these two distributions are quite similar, but the sample has a higher proportion of households earning

between $70,000 and $99,999.
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Table 3.4. Household size in the sample and in the 2017 Annual Social and Economic Supplement
(ASEC) of the CPS. CPS numbers are in thousands.

Sample CPS

Size Number Proportion Number Proportion

1 5,862 0.2090 35,388 0.2812
2 12,768 0.4554 42,785 0.3400
3 4,121 0.1469 19,423 0.1543
4 3,395 0.1210 16,267 0.1292
5 1,288 0.0459 7,548 0.0599
6 422 0.0150 2,813 0.0223

7+ 180 0.0064 1,596 0.0126

Total 28,036 1.0000 125,819 1.0000

Table 3.5. Annual household income in the sample and in the 2017 Annual Social and Economic Sup-
plement (ASEC) of the CPS. CPS numbers are in thousands.

Sample CPS

Income Number Proportion Number Proportion

Under $5,000 265 0.0094 4,138 0.0327
$5,000 to $9,999 274 0.0097 3,878 0.0307

$10,000 to $14,999 638 0.0227 6,122 0.0485
$15,000 to $19,999 694 0.0247 5,838 0.0462
$20,000 to $24,999 1,147 0.0409 6,245 0.0494
$25,000 to $29,999 1,282 0.0457 5,939 0.0470
$30,000 to $34,999 1,480 0.0527 5,919 0.0468
$35,000 to $39,999 1,432 0.0510 5,727 0.0453
$40,000 to $44,999 1,449 0.0516 5,487 0.0434
$45,000 to $49,999 1,637 0.0583 5,089 0.0403
$50,000 to $59,999 2,878 0.1026 9,417 0.0746
$60,000 to $69,999 2,380 0.0848 8,213 0.0650
$70,000 to $99,999 6,459 0.2303 19,249 0.1524

$100,000+ 6,021 0.2147 34,963 0.2769

Total 28,036 1.0000 126,224 1.0000
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Table 3.6. Age of eldest household head in the sample and the householder in the 2017 Annual Social
and Economic Supplement (ASEC) of the CPS. CPS numbers are in thousands.

Sample CPS

Age Number Proportion Number Proportion

Under 20 4 0.0001 753 0.0059
20 to 24 54 0.0019 5,608 0.0445
25 to 29 476 0.0169 9,453 0.0751
30 to 34 1,201 0.0428 10,594 0.0842
35 to 39 1,817 0.0648 10,651 0.0846
40 to 44 1,893 0.0675 10,571 0.0840
45 to 49 2,398 0.0855 11,115 0.0883
50 to 54 3,058 0.1090 12,180 0.0968
55 to 64 7,869 0.2806 23,896 0.1899
65 to 74 6,507 0.2320 17,551 0.1394

75+ 2,759 0.0984 13,448 0.1068

Total 28,036 1.0000 125,819 1.0000

Table 3.6 gives the distribution of the age of the eldest head of the household in our sample and the

age of the householder in the CPS. There is no direct comparison for these statistics, as the eldest head

may differ from the householder. This aspect of the data can explain why our sample seems to be older

than the general population.

There may also exist another source of non-representativeness: A consumer might behave differently

because she is being observed. For example, she might increase her expenditure to give the impression

that she is richer. This type of behaviour can be observed when the period of observation is short, but is

not usually sustainable in the long term. This effect should be negligible over the four months considered

in the illustration in Section 3.6.

3.E SARA Model with Taste Dependence

Consider the SARA model with taste dependence described in Section 1.6. In this model, dependence

is introduced using a “common” stochastic taste parameter such that:

U(x;π) = −Eπ
[

exp(−(Ac +A1)x1 − (Ac +A2)x2)
]
, (3.E.1)

where Ac, A1, A2 are independent non-negative taste parameters with distributions πc, π1, and π2. This

utility function can be written in terms of the Laplace transforms of these taste parameters:

U(x;π) = −Ψc(x1 + x2)Ψ1(x1)Ψ2(x2), (3.E.2)
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where Ψc, Ψ1, and Ψ2 are the Laplace transforms of Ac, A1, and A2. Therefore, its marginal rate of

substitution has the form:

MRS(x;π) =
d log Ψc(x1 + x2)/dx+ d log Ψ1(x1)/dx

d log Ψc(x1 + x2)/dx+ d log Ψ2(x2)/dx
. (3.E.3)

Below, I consider the possibility to identify the distributions of Ac, A1, and A2 from the knowledge of

the utility function (not observable), and then from the knowledge of the marginal rate of substitution

(which can be obtained by inverting the demand).

3.E.1 Identification from the Utility Function

I first ask whether the knowledge of the utility function is equivalent to the knowledge of the distributions

πc, π1, and π2. If the utility function U(x;π) is known, then:

log(−U(x;π)) = log Ψc(x1 + x2) + log Ψ1(x1) + log Ψ2(x2), (3.E.4)

is known. By taking the cross-derivative of this expression with respect to x1 and x2, we can also obtain

knowledge of:
d2 log Ψc(x1 + x2)

dx2
, (3.E.5)

for any x1, x2 > 0. Consequently, log Ψc(x) is known up to an affine function αx + c. Moreover, since

log Ψc(0) = 0, we can identify log Ψc(x) up to a multiplicative factor α. Equivalently, Ac can be replaced

with Ac − α, and A∗j can be replaced with A∗j + α, for j = 1, 2, without changing the utility function.

This reasoning leads to the following result:

Proposition 3.9. If preferences are SARA with a common stochastic taste parameter, Ac, A1, and A2

are independent, and the distributions πc, π1, and π2 have support (0,∞), then these distributions are

identified from the observation of utility U(x;π).

Proof. If πc, π1, and π2 have support (0,∞), then α = 0. The identification follows.

Proposition 3.9 shows that a condition on the supports of the taste distributions is needed for iden-

tification.

3.E.2 Identification Issue

Let us now consider the possibility of two distinct sets of taste distributions resulting in the same

preference ordering (equivalently, the same marginal rate of substitution).

Proposition 3.10. If preferences are SARA with a common stochastic taste parameter, and Ac, A1,

and A2 are independent, then (Ψc,Ψ1,Ψ2) and (Ψν
c ,Ψ

ν
1 ,Ψ

ν
2) lead to the same preference ordering, for

all positive scalars ν > 0.
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Proof. The proof is a direct consequence of the expression for MRS(x;π) in (3.E.3).

This type of identification issue has already been encountered in the SARA model with independent

taste parameters, as described in Section 3.5.1. It is not surprising that we have a similar result in this

model.

3.E.3 Recursive Case

We are left with the question: Is the identification issue described above the only type of issue that

we encounter in this model? First, let us consider the case in which A1 = 0. In this case, the total

taste parameter for good 1 is Ac, and the total taste parameter for good 2 is Ac + A2. Therefore, the

consumer’s risk aversion for drinks with high ABV is systematically larger than her risk aversion for

drinks with low ABV.

Proposition 3.11. If preferences are SARA with a common stochastic taste parameter, A1 = 0, Ac

and A2 are independent, and the distributions πc and π2 have support (0,∞), then these distributions

are identified up to a power transform of their Laplace transforms.

Proof. If A1 = 0, then the knowledge of the MRS implies the knowledge of:

d log Ψc(x1 + x2)/dx

d log Ψ2(x2)/dx
. (3.E.6)

By considering x2 = 0, we have to solve the equation:

d log Ψc(x1)

dx
=
d log Ψ2(0)/dx

d log Ψ∗2(0)/dx
· d log Ψ∗c(x1)

dx
(3.E.7)

Therefore, there is a positive scalar ν such that:

d log Ψc(x1)

dx
= ν

d log Ψ∗c(x1)

dx
, (3.E.8)

and the result follows by integration, using Ψc(0) = Ψ∗c(0) = 1.

3.E.4 General Case

Let us now consider the general case. The proof of the following result uses the limiting behaviour of

the Laplace transform of a positive random variable as x tends to infinity.

Proposition 3.12. If preferences are SARA with a common stochastic taste parameter, Ac, A1, and

A2 are independent, and the distributions πc, π1, and π2 have support (0,∞), then (Ψc,Ψ1,Ψ2) and
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(Ψ∗c ,Ψ
∗
1,Ψ

∗
2) lead to the same preference ordering if, and only if, for some ν > 0, we have:

Ψc = (Ψ∗c)
ν , Ψ1 = (Ψ∗1)ν , and Ψ2 = (Ψ∗2)ν . (3.E.9)

Proof. Consider the following two steps to identification:

(i) For any positive variable A, the logarithmic derivative of its Laplace transform Ψ(x) equals:

d log Ψ(x)

dx
= −E[A exp(−Ax)]

E[exp(−Ax)]
= EQx [A], (3.E.10)

where Qx is the deformed probability distribution with density:

exp(−Ax)

E[exp(−Ax)]
, (3.E.11)

with respect to the distribution of A. This deformed distribution tends to the positive point mass

at 0, and d log Ψ(x)/dx tends to 0, when x tends to infinity, under the assumption that A has full

support.17 This result can be applied to Ac, A1, and A2.

(ii) We can use the MRS in (3.E.3) to identify:

d log Ψ1(x1)/dx− d log Ψ2(x2)/dx

d log Ψc(x1 + x2)/dx
. (3.E.12)

Therefore, we can look for the solution(s) to the equality:

(
d log Ψ1(x1)

dx
− d log Ψ2(x2)

dx

)
d log Ψ∗c(x1 + x2)

dx

=

(
d log Ψ∗1(x1)

dx
− d log Ψ∗2(x2)

dx

)
d log Ψc(x1 + x2)

dx
.

(3.E.13)

Let us now assume that x2 tends to infinity, and denote z = x1 + x2. We obtain:

d log Ψ1(x1)

dx

d log Ψ∗c(z)

dx
' d log Ψ∗1(x1)

dx

d log Ψc(z)

dx
, (3.E.14)

for any x1 and large z. Consequently:

d log Ψ1(x1)/dx

d log Ψ∗1(x1)/dx
∼ d log Ψc(z)/dx

d log Ψ∗c(z)/dx
. (3.E.15)

Since the left-hand side of this equivalence is fixed for z tending to infinity, this limit exists:

lim
z→∞

d log Ψc(z)/dx

d log Ψ∗c(z)/dx
=
d log Ψ1(x1)/dx

d log Ψ∗1(x1)/dx
. (3.E.16)

17Without this assumption, we get limx→∞
d log Ψ(x)

dx
= ess infA, where ess inf denotes the essential infimum of the

distribution of A (see Theorem 13.2.5 and Remark 13.3 in Polyanskiy and Wu, 2017).
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Moreover, by definition, this limit is independent of x1. We deduce that:

d log Ψ1(x1)

dx
= ν

d log Ψ∗1(x1)

dx
, (3.E.17)

for some positive scalar ν.

(iii) The same reasoning can be used as x1 tends to infinity. This procedure yields:

ν = lim
z→∞

d log Ψc(z)/dx

d log Ψ∗c(z)/dx
=
d log Ψ2(x2)/dx

d log Ψ∗2(x2)/dx
. (3.E.18)

Therefore, we obtain:

d log Ψc(x)

dx
= ν

d log Ψ∗c(x)

dx
and

d log Ψj(x)

dx
= ν

d log Ψ∗j (x)

dx
, (3.E.19)

for j = 1, 2, and the result in this proposition follows by integration.
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